Пример #1
0
def fake_amr_ds(fields=("Density", ), geometry="cartesian", particles=0):
    from yt.frontends.stream.api import load_amr_grids
    prng = RandomState(0x4d3d3d3)
    LE, RE = _geom_transforms[geometry]
    LE = np.array(LE)
    RE = np.array(RE)
    data = []
    for gspec in _amr_grid_index:
        level, left_edge, right_edge, dims = gspec
        left_edge = left_edge * (RE - LE) + LE
        right_edge = right_edge * (RE - LE) + LE
        gdata = dict(level=level,
                     left_edge=left_edge,
                     right_edge=right_edge,
                     dimensions=dims)
        for f in fields:
            gdata[f] = prng.random_sample(dims)
        if particles:
            for i, f in enumerate('particle_position_%s' % ax for ax in 'xyz'):
                pdata = prng.random_sample(particles)
                pdata /= (right_edge[i] - left_edge[i])
                pdata += left_edge[i]
                gdata['io', f] = (pdata, 'code_length')
            for f in ('particle_velocity_%s' % ax for ax in 'xyz'):
                gdata['io', f] = (prng.random_sample(particles) - 0.5, 'cm/s')
            gdata['io', 'particle_mass'] = (prng.random_sample(particles), 'g')
        data.append(gdata)
    bbox = np.array([LE, RE]).T
    return load_amr_grids(data, [32, 32, 32], geometry=geometry, bbox=bbox)
def setup():
    """Prepare setup specific environment"""
    global test_ds

    grid_data = [
        dict(left_edge=[0.0, 0.0, 0.0], right_edge=[1.0, 1.0, 1.],
             level=0, dimensions=[16, 16, 16]),
        dict(left_edge=[0.25, 0.25, 0.25], right_edge=[0.75, 0.75, 0.75],
             level=1, dimensions=[16, 16, 16]),
        dict(left_edge=[0.25, 0.25, 0.375], right_edge=[0.5, 0.5, 0.625],
             level=2, dimensions=[16, 16, 16]),
        dict(left_edge=[0.5, 0.5, 0.375], right_edge=[0.75, 0.75, 0.625],
             level=2, dimensions=[16, 16, 16]),
        dict(left_edge=[0.3125, 0.3125, 0.4375],
             right_edge=[0.4375, 0.4375, 0.5625],
             level=3, dimensions=[16, 16, 16]),
        dict(left_edge=[0.5625, 0.5625, 0.4375],
             right_edge=[0.6875, 0.6875, 0.5625],
             level=3, dimensions=[16, 16, 16])
    ]

    for grid in grid_data:
        grid["density"] = \
            np.random.random(grid["dimensions"]) * 2 ** grid["level"]
    test_ds = load_amr_grids(grid_data, [16, 16, 16], 1.0)
Пример #3
0
def setup_test_ds():
    """Prepare setup specific environment"""
    grid_data = [
        dict(left_edge=[0.0, 0.0, 0.0],
             right_edge=[1.0, 1.0, 1.],
             level=0,
             dimensions=[16, 16, 16]),
        dict(left_edge=[0.25, 0.25, 0.25],
             right_edge=[0.75, 0.75, 0.75],
             level=1,
             dimensions=[16, 16, 16]),
        dict(left_edge=[0.25, 0.25, 0.375],
             right_edge=[0.5, 0.5, 0.625],
             level=2,
             dimensions=[16, 16, 16]),
        dict(left_edge=[0.5, 0.5, 0.375],
             right_edge=[0.75, 0.75, 0.625],
             level=2,
             dimensions=[16, 16, 16]),
        dict(left_edge=[0.3125, 0.3125, 0.4375],
             right_edge=[0.4375, 0.4375, 0.5625],
             level=3,
             dimensions=[16, 16, 16]),
        dict(left_edge=[0.5625, 0.5625, 0.4375],
             right_edge=[0.6875, 0.6875, 0.5625],
             level=3,
             dimensions=[16, 16, 16])
    ]

    for grid in grid_data:
        grid["density"] = \
            (np.random.random(grid["dimensions"]) * 2 ** grid["level"], "g/cm**3")
    return load_amr_grids(grid_data, [16, 16, 16])
Пример #4
0
def fake_amr_ds(
        fields=("Density", ), geometry="cartesian", particles=0,
        length_unit=None):
    from yt.frontends.stream.api import load_amr_grids

    prng = RandomState(0x4D3D3D3)
    LE, RE = _geom_transforms[geometry]
    LE = np.array(LE)
    RE = np.array(RE)
    data = []
    for gspec in _amr_grid_index:
        level, left_edge, right_edge, dims = gspec
        left_edge = left_edge * (RE - LE) + LE
        right_edge = right_edge * (RE - LE) + LE
        gdata = dict(level=level,
                     left_edge=left_edge,
                     right_edge=right_edge,
                     dimensions=dims)
        for f in fields:
            gdata[f] = prng.random_sample(dims)
        if particles:
            for i, f in enumerate(f"particle_position_{ax}" for ax in "xyz"):
                pdata = prng.random_sample(particles)
                pdata /= right_edge[i] - left_edge[i]
                pdata += left_edge[i]
                gdata["io", f] = (pdata, "code_length")
            for f in (f"particle_velocity_{ax}" for ax in "xyz"):
                gdata["io", f] = (prng.random_sample(particles) - 0.5, "cm/s")
            gdata["io", "particle_mass"] = (prng.random_sample(particles), "g")
        data.append(gdata)
    bbox = np.array([LE, RE]).T
    return load_amr_grids(data, [32, 32, 32],
                          geometry=geometry,
                          bbox=bbox,
                          length_unit=length_unit)
Пример #5
0
def fake_amr_ds(fields = ("Density",)):
    from yt.frontends.stream.api import load_amr_grids
    data = []
    for gspec in _amr_grid_index:
        level, left_edge, right_edge, dims = gspec
        gdata = dict(level = level,
                     left_edge = left_edge,
                     right_edge = right_edge,
                     dimensions = dims)
        for f in fields:
            gdata[f] = np.random.random(dims)
        data.append(gdata)
    return load_amr_grids(data, [32, 32, 32], 1.0)
Пример #6
0
def fake_amr_ds(fields=("Density", ), geometry="cartesian"):
    from yt.frontends.stream.api import load_amr_grids
    LE, RE = _geom_transforms[geometry]
    LE = np.array(LE)
    RE = np.array(RE)
    data = []
    for gspec in _amr_grid_index:
        level, left_edge, right_edge, dims = gspec
        left_edge = left_edge * (RE - LE) + LE
        right_edge = right_edge * (RE - LE) + LE
        gdata = dict(level=level,
                     left_edge=left_edge,
                     right_edge=right_edge,
                     dimensions=dims)
        for f in fields:
            gdata[f] = np.random.random(dims)
        data.append(gdata)
    bbox = np.array([LE, RE]).T
    return load_amr_grids(data, [32, 32, 32], geometry=geometry, bbox=bbox)
Пример #7
0
def fake_amr_ds(fields = ("Density",), geometry = "cartesian"):
    from yt.frontends.stream.api import load_amr_grids
    LE, RE = _geom_transforms[geometry]
    LE = np.array(LE)
    RE = np.array(RE)
    data = []
    for gspec in _amr_grid_index:
        level, left_edge, right_edge, dims = gspec
        left_edge = left_edge * (RE - LE) + LE
        right_edge = right_edge * (RE - LE) + LE
        gdata = dict(level = level,
                     left_edge = left_edge,
                     right_edge = right_edge,
                     dimensions = dims)
        for f in fields:
            gdata[f] = np.random.random(dims)
        data.append(gdata)
    bbox = np.array([LE, RE]).T
    return load_amr_grids(data, [32, 32, 32], 1.0, geometry=geometry, bbox=bbox)
Пример #8
0
def test_stream_particles():
    num_particles = 100000
    domain_dims = (64, 64, 64)
    dens = np.random.random(domain_dims)
    x = np.random.uniform(size=num_particles)
    y = np.random.uniform(size=num_particles)
    z = np.random.uniform(size=num_particles)
    m = np.ones(num_particles)

    # Field operators and cell flagging methods

    fo = []
    fo.append(ic.TopHatSphere(0.1, [0.2, 0.3, 0.4], {"density": 2.0}))
    fo.append(ic.TopHatSphere(0.05, [0.7, 0.4, 0.75], {"density": 20.0}))
    rc = [fm.flagging_method_registry["overdensity"](1.0)]

    # Check that all of this runs ok without particles

    ug0 = load_uniform_grid({"density": dens}, domain_dims, 1.0, nprocs=8)
    amr0 = refine_amr(ug0, rc, fo, 3)

    grid_data = []

    for grid in amr0.index.grids:

        data = dict(
            left_edge=grid.LeftEdge,
            right_edge=grid.RightEdge,
            level=grid.Level,
            dimensions=grid.ActiveDimensions,
        )

        for field in amr0.field_list:
            data[field] = grid[field]
        grid_data.append(data)

    amr0 = load_amr_grids(grid_data, domain_dims)

    # Now add particles

    fields1 = {
        "density": dens,
        "particle_position_x": x,
        "particle_position_y": y,
        "particle_position_z": z,
        "particle_mass": m,
    }

    fields2 = fields1.copy()

    ug1 = load_uniform_grid(fields1, domain_dims, 1.0)
    ug2 = load_uniform_grid(fields2, domain_dims, 1.0, nprocs=8)

    # Check to make sure the number of particles is the same

    number_of_particles1 = np.sum([grid.NumberOfParticles for grid in ug1.index.grids])
    number_of_particles2 = np.sum([grid.NumberOfParticles for grid in ug2.index.grids])

    assert_equal(number_of_particles1, num_particles)
    assert_equal(number_of_particles1, number_of_particles2)

    for grid in ug2.index.grids:
        tot_parts = grid["io", "particle_position_x"].size
        tot_all_parts = grid["all", "particle_position_x"].size
        assert tot_parts == grid.NumberOfParticles
        assert tot_all_parts == grid.NumberOfParticles

    # Check to make sure the fields have been defined correctly

    for ptype in ("all", "io"):
        assert (
            ug1._get_field_info(ptype, "particle_position_x").sampling_type
            == "particle"
        )
        assert (
            ug1._get_field_info(ptype, "particle_position_y").sampling_type
            == "particle"
        )
        assert (
            ug1._get_field_info(ptype, "particle_position_z").sampling_type
            == "particle"
        )
        assert ug1._get_field_info(ptype, "particle_mass").sampling_type == "particle"
    assert not ug1._get_field_info("gas", "density").sampling_type == "particle"

    for ptype in ("all", "io"):
        assert (
            ug2._get_field_info(ptype, "particle_position_x").sampling_type
            == "particle"
        )
        assert (
            ug2._get_field_info(ptype, "particle_position_y").sampling_type
            == "particle"
        )
        assert (
            ug2._get_field_info(ptype, "particle_position_z").sampling_type
            == "particle"
        )
        assert ug2._get_field_info(ptype, "particle_mass").sampling_type == "particle"
    assert not ug2._get_field_info("gas", "density").sampling_type == "particle"

    # Now refine this

    amr1 = refine_amr(ug1, rc, fo, 3)
    for field in sorted(ug1.field_list):
        assert field in amr1.field_list

    grid_data = []

    for grid in amr1.index.grids:

        data = dict(
            left_edge=grid.LeftEdge,
            right_edge=grid.RightEdge,
            level=grid.Level,
            dimensions=grid.ActiveDimensions,
        )

        for field in amr1.field_list:
            if field[0] not in ("all", "nbody"):
                data[field] = grid[field]

        grid_data.append(data)

    amr2 = load_amr_grids(grid_data, domain_dims)

    # Check everything again

    number_of_particles1 = [grid.NumberOfParticles for grid in amr1.index.grids]
    number_of_particles2 = [grid.NumberOfParticles for grid in amr2.index.grids]

    assert_equal(np.sum(number_of_particles1), num_particles)
    assert_equal(number_of_particles1, number_of_particles2)

    for grid in amr1.index.grids:
        tot_parts = grid["io", "particle_position_x"].size
        tot_all_parts = grid["all", "particle_position_x"].size
        assert tot_parts == grid.NumberOfParticles
        assert tot_all_parts == grid.NumberOfParticles

    for grid in amr2.index.grids:
        tot_parts = grid["io", "particle_position_x"].size
        tot_all_parts = grid["all", "particle_position_x"].size
        assert tot_parts == grid.NumberOfParticles
        assert tot_all_parts == grid.NumberOfParticles

    assert (
        amr1._get_field_info("all", "particle_position_x").sampling_type == "particle"
    )
    assert (
        amr1._get_field_info("all", "particle_position_y").sampling_type == "particle"
    )
    assert (
        amr1._get_field_info("all", "particle_position_z").sampling_type == "particle"
    )
    assert amr1._get_field_info("all", "particle_mass").sampling_type == "particle"
    assert not amr1._get_field_info("gas", "density").sampling_type == "particle"

    assert (
        amr2._get_field_info("all", "particle_position_x").sampling_type == "particle"
    )
    assert (
        amr2._get_field_info("all", "particle_position_y").sampling_type == "particle"
    )
    assert (
        amr2._get_field_info("all", "particle_position_z").sampling_type == "particle"
    )
    assert amr2._get_field_info("all", "particle_mass").sampling_type == "particle"
    assert not amr2._get_field_info("gas", "density").sampling_type == "particle"

    # Now perform similar checks, but with multiple particle types

    num_dm_particles = 30000
    xd = np.random.uniform(size=num_dm_particles)
    yd = np.random.uniform(size=num_dm_particles)
    zd = np.random.uniform(size=num_dm_particles)
    md = np.ones(num_dm_particles)

    num_star_particles = 20000
    xs = np.random.uniform(size=num_star_particles)
    ys = np.random.uniform(size=num_star_particles)
    zs = np.random.uniform(size=num_star_particles)
    ms = 2.0 * np.ones(num_star_particles)

    dens = np.random.random(domain_dims)

    fields3 = {
        "density": dens,
        ("dm", "particle_position_x"): xd,
        ("dm", "particle_position_y"): yd,
        ("dm", "particle_position_z"): zd,
        ("dm", "particle_mass"): md,
        ("star", "particle_position_x"): xs,
        ("star", "particle_position_y"): ys,
        ("star", "particle_position_z"): zs,
        ("star", "particle_mass"): ms,
    }

    fields4 = fields3.copy()

    ug3 = load_uniform_grid(fields3, domain_dims, 1.0)
    ug4 = load_uniform_grid(fields4, domain_dims, 1.0, nprocs=8)

    # Check to make sure the number of particles is the same

    number_of_particles3 = np.sum([grid.NumberOfParticles for grid in ug3.index.grids])
    number_of_particles4 = np.sum([grid.NumberOfParticles for grid in ug4.index.grids])

    assert_equal(number_of_particles3, num_dm_particles + num_star_particles)
    assert_equal(number_of_particles3, number_of_particles4)

    for grid in ug4.index.grids:
        tot_parts = grid["dm", "particle_position_x"].size
        tot_parts += grid["star", "particle_position_x"].size
        tot_all_parts = grid["all", "particle_position_x"].size
        assert tot_parts == grid.NumberOfParticles
        assert tot_all_parts == grid.NumberOfParticles

    # Check to make sure the fields have been defined correctly

    for ptype in ("dm", "star"):
        assert (
            ug3._get_field_info(ptype, "particle_position_x").sampling_type
            == "particle"
        )
        assert (
            ug3._get_field_info(ptype, "particle_position_y").sampling_type
            == "particle"
        )
        assert (
            ug3._get_field_info(ptype, "particle_position_z").sampling_type
            == "particle"
        )
        assert ug3._get_field_info(ptype, "particle_mass").sampling_type == "particle"
        assert (
            ug4._get_field_info(ptype, "particle_position_x").sampling_type
            == "particle"
        )
        assert (
            ug4._get_field_info(ptype, "particle_position_y").sampling_type
            == "particle"
        )
        assert (
            ug4._get_field_info(ptype, "particle_position_z").sampling_type
            == "particle"
        )
        assert ug4._get_field_info(ptype, "particle_mass").sampling_type == "particle"

    # Now refine this

    amr3 = refine_amr(ug3, rc, fo, 3)
    for field in sorted(ug3.field_list):
        assert field in amr3.field_list

    grid_data = []

    for grid in amr3.index.grids:

        data = dict(
            left_edge=grid.LeftEdge,
            right_edge=grid.RightEdge,
            level=grid.Level,
            dimensions=grid.ActiveDimensions,
        )

        for field in amr3.field_list:
            if field[0] not in ("all", "nbody"):
                data[field] = grid[field]

        grid_data.append(data)

    amr4 = load_amr_grids(grid_data, domain_dims)

    # Check everything again

    number_of_particles3 = [grid.NumberOfParticles for grid in amr3.index.grids]
    number_of_particles4 = [grid.NumberOfParticles for grid in amr4.index.grids]

    assert_equal(np.sum(number_of_particles3), num_star_particles + num_dm_particles)
    assert_equal(number_of_particles3, number_of_particles4)

    for ptype in ("dm", "star"):
        assert (
            amr3._get_field_info(ptype, "particle_position_x").sampling_type
            == "particle"
        )
        assert (
            amr3._get_field_info(ptype, "particle_position_y").sampling_type
            == "particle"
        )
        assert (
            amr3._get_field_info(ptype, "particle_position_z").sampling_type
            == "particle"
        )
        assert amr3._get_field_info(ptype, "particle_mass").sampling_type == "particle"
        assert (
            amr4._get_field_info(ptype, "particle_position_x").sampling_type
            == "particle"
        )
        assert (
            amr4._get_field_info(ptype, "particle_position_y").sampling_type
            == "particle"
        )
        assert (
            amr4._get_field_info(ptype, "particle_position_z").sampling_type
            == "particle"
        )
        assert amr4._get_field_info(ptype, "particle_mass").sampling_type == "particle"

    for grid in amr3.index.grids:
        tot_parts = grid["dm", "particle_position_x"].size
        tot_parts += grid["star", "particle_position_x"].size
        tot_all_parts = grid["all", "particle_position_x"].size
        assert tot_parts == grid.NumberOfParticles
        assert tot_all_parts == grid.NumberOfParticles

    for grid in amr4.index.grids:
        tot_parts = grid["dm", "particle_position_x"].size
        tot_parts += grid["star", "particle_position_x"].size
        tot_all_parts = grid["all", "particle_position_x"].size
        assert tot_parts == grid.NumberOfParticles
        assert tot_all_parts == grid.NumberOfParticles
def test_stream_particles() :
    num_particles = 100000
    domain_dims = (64, 64, 64)
    dens = np.random.random(domain_dims) 
    x = np.random.uniform(size=num_particles)
    y = np.random.uniform(size=num_particles)
    z = np.random.uniform(size=num_particles)
    m = np.ones((num_particles))

    # Field operators and cell flagging methods

    fo = []
    fo.append(ic.TopHatSphere(0.1, [0.2,0.3,0.4],{"density": 2.0}))
    fo.append(ic.TopHatSphere(0.05, [0.7,0.4,0.75],{"density": 20.0}))
    rc = [fm.flagging_method_registry["overdensity"](1.0)]
    
    # Check that all of this runs ok without particles
    
    ug0 = load_uniform_grid({"density": dens}, domain_dims, 1.0, nprocs=8)
    amr0 = refine_amr(ug0, rc, fo, 3)

    grid_data = []
    
    for grid in amr0.index.grids :
        
        data = dict(left_edge = grid.LeftEdge,
                    right_edge = grid.RightEdge,
                    level = grid.Level,
                    dimensions = grid.ActiveDimensions,
                    number_of_particles = grid.NumberOfParticles)
    
        for field in amr0.field_list :
            
            data[field] = grid[field]
            
        grid_data.append(data)

    amr0 = load_amr_grids(grid_data, domain_dims, 1.0)
                        
    # Now add particles

    fields1 = {"density": dens,
               "particle_position_x": x,
               "particle_position_y": y,
               "particle_position_z": z,
               "particle_mass": m,
               "number_of_particles": num_particles}

    fields2 = fields1.copy()

    ug1 = load_uniform_grid(fields1, domain_dims, 1.0)
    ug2 = load_uniform_grid(fields2, domain_dims, 1.0, nprocs=8)

    # Check to make sure the number of particles is the same

    number_of_particles1 = np.sum([grid.NumberOfParticles for grid in ug1.index.grids])
    number_of_particles2 = np.sum([grid.NumberOfParticles for grid in ug2.index.grids])
    
    yield assert_equal, number_of_particles1, num_particles
    yield assert_equal, number_of_particles1, number_of_particles2

    # Check to make sure the fields have been defined correctly
    
    for ptype in ("all", "io"):
        assert ug1._get_field_info(ptype, "particle_position_x").particle_type
        assert ug1._get_field_info(ptype, "particle_position_y").particle_type
        assert ug1._get_field_info(ptype, "particle_position_z").particle_type
        assert ug1._get_field_info(ptype, "particle_mass").particle_type
    assert not ug1._get_field_info("gas", "density").particle_type

    for ptype in ("all", "io"):
        assert ug2._get_field_info(ptype, "particle_position_x").particle_type
        assert ug2._get_field_info(ptype, "particle_position_y").particle_type
        assert ug2._get_field_info(ptype, "particle_position_z").particle_type
        assert ug2._get_field_info(ptype, "particle_mass").particle_type
    assert not ug2._get_field_info("gas", "density").particle_type
    
    # Now refine this

    amr1 = refine_amr(ug1, rc, fo, 3)
    for field in sorted(ug1.field_list):
        yield assert_equal, (field in amr1.field_list), True
    
    grid_data = []
    
    for grid in amr1.index.grids :
        
        data = dict(left_edge = grid.LeftEdge,
                    right_edge = grid.RightEdge,
                    level = grid.Level,
                    dimensions = grid.ActiveDimensions,
                    number_of_particles = grid.NumberOfParticles)

        for field in amr1.field_list :

            data[field] = grid[field]
            
        grid_data.append(data)
    
    amr2 = load_amr_grids(grid_data, domain_dims, 1.0)

    # Check everything again

    number_of_particles1 = [grid.NumberOfParticles for grid in amr1.index.grids]
    number_of_particles2 = [grid.NumberOfParticles for grid in amr2.index.grids]
    
    yield assert_equal, np.sum(number_of_particles1), num_particles
    yield assert_equal, number_of_particles1, number_of_particles2
    
    assert amr1._get_field_info("all", "particle_position_x").particle_type
    assert amr1._get_field_info("all", "particle_position_y").particle_type
    assert amr1._get_field_info("all", "particle_position_z").particle_type
    assert amr1._get_field_info("all", "particle_mass").particle_type
    assert not amr1._get_field_info("gas", "density").particle_type
    
    assert amr2._get_field_info("all", "particle_position_x").particle_type
    assert amr2._get_field_info("all", "particle_position_y").particle_type
    assert amr2._get_field_info("all", "particle_position_z").particle_type
    assert amr2._get_field_info("all", "particle_mass").particle_type
    assert not amr2._get_field_info("gas", "density").particle_type
Пример #10
0
def test_stream_particles():
    num_particles = 100000
    domain_dims = (64, 64, 64)
    dens = np.random.random(domain_dims)
    x = np.random.uniform(size=num_particles)
    y = np.random.uniform(size=num_particles)
    z = np.random.uniform(size=num_particles)
    m = np.ones((num_particles))

    # Field operators and cell flagging methods

    fo = []
    fo.append(ic.TopHatSphere(0.1, [0.2, 0.3, 0.4], {"density": 2.0}))
    fo.append(ic.TopHatSphere(0.05, [0.7, 0.4, 0.75], {"density": 20.0}))
    rc = [fm.flagging_method_registry["overdensity"](1.0)]

    # Check that all of this runs ok without particles

    ug0 = load_uniform_grid({"density": dens}, domain_dims, 1.0, nprocs=8)
    amr0 = refine_amr(ug0, rc, fo, 3)

    grid_data = []

    for grid in amr0.index.grids:

        data = dict(left_edge=grid.LeftEdge,
                    right_edge=grid.RightEdge,
                    level=grid.Level,
                    dimensions=grid.ActiveDimensions,
                    number_of_particles=grid.NumberOfParticles)

        for field in amr0.field_list:

            data[field] = grid[field]

        grid_data.append(data)

    amr0 = load_amr_grids(grid_data, domain_dims, 1.0)

    # Now add particles

    fields1 = {
        "density": dens,
        "particle_position_x": x,
        "particle_position_y": y,
        "particle_position_z": z,
        "particle_mass": m,
        "number_of_particles": num_particles
    }

    fields2 = fields1.copy()

    ug1 = load_uniform_grid(fields1, domain_dims, 1.0)
    ug2 = load_uniform_grid(fields2, domain_dims, 1.0, nprocs=8)

    # Check to make sure the number of particles is the same

    number_of_particles1 = np.sum(
        [grid.NumberOfParticles for grid in ug1.index.grids])
    number_of_particles2 = np.sum(
        [grid.NumberOfParticles for grid in ug2.index.grids])

    yield assert_equal, number_of_particles1, num_particles
    yield assert_equal, number_of_particles1, number_of_particles2

    # Check to make sure the fields have been defined correctly

    for ptype in ("all", "io"):
        assert ug1._get_field_info(ptype, "particle_position_x").particle_type
        assert ug1._get_field_info(ptype, "particle_position_y").particle_type
        assert ug1._get_field_info(ptype, "particle_position_z").particle_type
        assert ug1._get_field_info(ptype, "particle_mass").particle_type
    assert not ug1._get_field_info("gas", "density").particle_type

    for ptype in ("all", "io"):
        assert ug2._get_field_info(ptype, "particle_position_x").particle_type
        assert ug2._get_field_info(ptype, "particle_position_y").particle_type
        assert ug2._get_field_info(ptype, "particle_position_z").particle_type
        assert ug2._get_field_info(ptype, "particle_mass").particle_type
    assert not ug2._get_field_info("gas", "density").particle_type

    # Now refine this

    amr1 = refine_amr(ug1, rc, fo, 3)
    for field in sorted(ug1.field_list):
        yield assert_equal, (field in amr1.field_list), True

    grid_data = []

    for grid in amr1.index.grids:

        data = dict(left_edge=grid.LeftEdge,
                    right_edge=grid.RightEdge,
                    level=grid.Level,
                    dimensions=grid.ActiveDimensions,
                    number_of_particles=grid.NumberOfParticles)

        for field in amr1.field_list:

            data[field] = grid[field]

        grid_data.append(data)

    amr2 = load_amr_grids(grid_data, domain_dims, 1.0)

    # Check everything again

    number_of_particles1 = [
        grid.NumberOfParticles for grid in amr1.index.grids
    ]
    number_of_particles2 = [
        grid.NumberOfParticles for grid in amr2.index.grids
    ]

    yield assert_equal, np.sum(number_of_particles1), num_particles
    yield assert_equal, number_of_particles1, number_of_particles2

    assert amr1._get_field_info("all", "particle_position_x").particle_type
    assert amr1._get_field_info("all", "particle_position_y").particle_type
    assert amr1._get_field_info("all", "particle_position_z").particle_type
    assert amr1._get_field_info("all", "particle_mass").particle_type
    assert not amr1._get_field_info("gas", "density").particle_type

    assert amr2._get_field_info("all", "particle_position_x").particle_type
    assert amr2._get_field_info("all", "particle_position_y").particle_type
    assert amr2._get_field_info("all", "particle_position_z").particle_type
    assert amr2._get_field_info("all", "particle_mass").particle_type
    assert not amr2._get_field_info("gas", "density").particle_type