Пример #1
0
def load_amr_grids(
    grid_data,
    domain_dimensions,
    bbox=None,
    sim_time=0.0,
    length_unit=None,
    mass_unit=None,
    time_unit=None,
    velocity_unit=None,
    magnetic_unit=None,
    periodicity=(True, True, True),
    geometry="cartesian",
    refine_by=2,
    unit_system="cgs",
):
    r"""Load a set of grids of data into yt as a
    :class:`~yt.frontends.stream.data_structures.StreamHandler`.
    This should allow a sequence of grids of varying resolution of data to be
    loaded directly into yt and analyzed as would any others.  This comes with
    several caveats:

    * Units will be incorrect unless the unit system is explicitly specified.
    * Some functions may behave oddly, and parallelism will be
      disappointing or non-existent in most cases.
    * Particles may be difficult to integrate.
    * No consistency checks are performed on the index

    Parameters
    ----------

    grid_data : list of dicts
        This is a list of dicts. Each dict must have entries "left_edge",
        "right_edge", "dimensions", "level", and then any remaining entries are
        assumed to be fields. Field entries must map to an NDArray. The grid_data
        may also include a particle count. If no particle count is supplied, the
        dataset is understood to contain no particles. The grid_data will be
        modified in place and can't be assumed to be static.
    domain_dimensions : array_like
        This is the domain dimensions of the grid
    length_unit : string or float
        Unit to use for lengths.  Defaults to unitless.  If set to be a string, the bbox
        dimensions are assumed to be in the corresponding units.  If set to a float, the
        value is a assumed to be the conversion from bbox dimensions to centimeters.
    mass_unit : string or float
        Unit to use for masses.  Defaults to unitless.
    time_unit : string or float
        Unit to use for times.  Defaults to unitless.
    velocity_unit : string or float
        Unit to use for velocities.  Defaults to unitless.
    magnetic_unit : string or float
        Unit to use for magnetic fields.  Defaults to unitless.
    bbox : array_like (xdim:zdim, LE:RE), optional
        Size of computational domain in units specified by length_unit.
        Defaults to a cubic unit-length domain.
    sim_time : float, optional
        The simulation time in seconds
    periodicity : tuple of booleans
        Determines whether the data will be treated as periodic along
        each axis
    geometry : string or tuple
        "cartesian", "cylindrical", "polar", "spherical", "geographic" or
        "spectral_cube".  Optionally, a tuple can be provided to specify the
        axis ordering -- for instance, to specify that the axis ordering should
        be z, x, y, this would be: ("cartesian", ("z", "x", "y")).  The same
        can be done for other coordinates, for instance:
        ("spherical", ("theta", "phi", "r")).
    refine_by : integer or list/array of integers.
        Specifies the refinement ratio between levels.  Defaults to 2.  This
        can be an array, in which case it specifies for each dimension.  For
        instance, this can be used to say that some datasets have refinement of
        1 in one dimension, indicating that they span the full range in that
        dimension.

    Examples
    --------

    >>> grid_data = [
    ...     dict(left_edge = [0.0, 0.0, 0.0],
    ...          right_edge = [1.0, 1.0, 1.],
    ...          level = 0,
    ...          dimensions = [32, 32, 32],
    ...          number_of_particles = 0),
    ...     dict(left_edge = [0.25, 0.25, 0.25],
    ...          right_edge = [0.75, 0.75, 0.75],
    ...          level = 1,
    ...          dimensions = [32, 32, 32],
    ...          number_of_particles = 0)
    ... ]
    ...
    >>> for g in grid_data:
    ...     g["density"] = (np.random.random(g["dimensions"])*2**g["level"], "g/cm**3")
    ...
    >>> ds = load_amr_grids(grid_data, [32, 32, 32], length_unit=1.0)
    """
    from yt.frontends.stream.data_structures import (
        StreamDataset,
        StreamDictFieldHandler,
        StreamHandler,
    )
    from yt.frontends.stream.definitions import process_data, set_particle_types

    domain_dimensions = np.array(domain_dimensions)
    ngrids = len(grid_data)
    if bbox is None:
        bbox = np.array([[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]], "float64")
    domain_left_edge = np.array(bbox[:, 0], "float64")
    domain_right_edge = np.array(bbox[:, 1], "float64")
    grid_levels = np.zeros((ngrids, 1), dtype="int32")
    grid_left_edges = np.zeros((ngrids, 3), dtype="float64")
    grid_right_edges = np.zeros((ngrids, 3), dtype="float64")
    grid_dimensions = np.zeros((ngrids, 3), dtype="int32")
    number_of_particles = np.zeros((ngrids, 1), dtype="int64")
    parent_ids = np.zeros(ngrids, dtype="int64") - 1
    sfh = StreamDictFieldHandler()
    for i, g in enumerate(grid_data):
        grid_left_edges[i, :] = g.pop("left_edge")
        grid_right_edges[i, :] = g.pop("right_edge")
        grid_dimensions[i, :] = g.pop("dimensions")
        grid_levels[i, :] = g.pop("level")
        # If someone included this throw it away--old API
        if "number_of_particles" in g:
            issue_deprecation_warning(
                "It is no longer necessary to include "
                "the number of particles in the data "
                "dict. The number of particles is "
                "determined from the sizes of the "
                "particle fields.",
                since="4.0.0",
                removal="4.1.0",
            )
            g.pop("number_of_particles")
        field_units, data, n_particles = process_data(
            g, grid_dims=tuple(grid_dimensions[i, :])
        )
        number_of_particles[i, :] = n_particles
        sfh[i] = data

    # We now reconstruct our parent ids, so that our particle assignment can
    # proceed.
    mask = np.empty(ngrids, dtype="int32")
    for gi in range(ngrids):
        get_box_grids_level(
            grid_left_edges[gi, :],
            grid_right_edges[gi, :],
            grid_levels[gi] + 1,
            grid_left_edges,
            grid_right_edges,
            grid_levels,
            mask,
        )
        ids = np.where(mask.astype("bool"))
        for ci in ids:
            parent_ids[ci] = gi

    # Check if the grid structure is properly aligned (bug #1295)
    for lvl in range(grid_levels.min() + 1, grid_levels.max() + 1):
        idx = grid_levels.flatten() == lvl
        dims = domain_dimensions * refine_by ** (lvl - 1)
        for iax, ax in enumerate("xyz"):
            cell_edges = np.linspace(
                domain_left_edge[iax], domain_right_edge[iax], dims[iax], endpoint=False
            )
            if set(grid_left_edges[idx, iax]) - set(cell_edges):
                raise YTIllDefinedAMR(lvl, ax)

    if length_unit is None:
        length_unit = "code_length"
    if mass_unit is None:
        mass_unit = "code_mass"
    if time_unit is None:
        time_unit = "code_time"
    if velocity_unit is None:
        velocity_unit = "code_velocity"
    if magnetic_unit is None:
        magnetic_unit = "code_magnetic"

    particle_types = {}

    for grid in sfh.values():
        particle_types.update(set_particle_types(grid))

    handler = StreamHandler(
        grid_left_edges,
        grid_right_edges,
        grid_dimensions,
        grid_levels,
        parent_ids,
        number_of_particles,
        np.zeros(ngrids).reshape((ngrids, 1)),
        sfh,
        field_units,
        (length_unit, mass_unit, time_unit, velocity_unit, magnetic_unit),
        particle_types=particle_types,
        periodicity=periodicity,
    )

    handler.name = "AMRGridData"
    handler.domain_left_edge = domain_left_edge
    handler.domain_right_edge = domain_right_edge
    handler.refine_by = refine_by
    if np.all(domain_dimensions[1:] == 1):
        dimensionality = 1
    elif domain_dimensions[2] == 1:
        dimensionality = 2
    else:
        dimensionality = 3
    handler.dimensionality = dimensionality
    handler.domain_dimensions = domain_dimensions
    handler.simulation_time = sim_time
    handler.cosmology_simulation = 0

    sds = StreamDataset(handler, geometry=geometry, unit_system=unit_system)
    return sds
Пример #2
0
def load_uniform_grid(
    data,
    domain_dimensions,
    length_unit=None,
    bbox=None,
    nprocs=1,
    sim_time=0.0,
    mass_unit=None,
    time_unit=None,
    velocity_unit=None,
    magnetic_unit=None,
    periodicity=(True, True, True),
    geometry="cartesian",
    unit_system="cgs",
):
    r"""Load a uniform grid of data into yt as a
    :class:`~yt.frontends.stream.data_structures.StreamHandler`.

    This should allow a uniform grid of data to be loaded directly into yt and
    analyzed as would any others.  This comes with several caveats:

    * Units will be incorrect unless the unit system is explicitly
      specified.
    * Some functions may behave oddly, and parallelism will be
      disappointing or non-existent in most cases.
    * Particles may be difficult to integrate.

    Particle fields are detected as one-dimensional fields.

    Parameters
    ----------
    data : dict
        This is a dict of numpy arrays or (numpy array, unit spec) tuples.
        The keys are the field names.
    domain_dimensions : array_like
        This is the domain dimensions of the grid
    length_unit : string
        Unit to use for lengths.  Defaults to unitless.
    bbox : array_like (xdim:zdim, LE:RE), optional
        Size of computational domain in units specified by length_unit.
        Defaults to a cubic unit-length domain.
    nprocs: integer, optional
        If greater than 1, will create this number of subarrays out of data
    sim_time : float, optional
        The simulation time in seconds
    mass_unit : string
        Unit to use for masses.  Defaults to unitless.
    time_unit : string
        Unit to use for times.  Defaults to unitless.
    velocity_unit : string
        Unit to use for velocities.  Defaults to unitless.
    magnetic_unit : string
        Unit to use for magnetic fields. Defaults to unitless.
    periodicity : tuple of booleans
        Determines whether the data will be treated as periodic along
        each axis
    geometry : string or tuple
        "cartesian", "cylindrical", "polar", "spherical", "geographic" or
        "spectral_cube".  Optionally, a tuple can be provided to specify the
        axis ordering -- for instance, to specify that the axis ordering should
        be z, x, y, this would be: ("cartesian", ("z", "x", "y")).  The same
        can be done for other coordinates, for instance:
        ("spherical", ("theta", "phi", "r")).

    Examples
    --------
    >>> np.random.seed(int(0x4D3D3D3))
    >>> bbox = np.array([[0., 1.0], [-1.5, 1.5], [1.0, 2.5]])
    >>> arr = np.random.random((128, 128, 128))
    >>> data = dict(density=arr)
    >>> ds = load_uniform_grid(data, arr.shape, length_unit='cm',
    ...                        bbox=bbox, nprocs=12)
    >>> dd = ds.all_data()
    >>> dd['density']
    unyt_array([0.76017901, 0.96855994, 0.49205428, ..., 0.78798258,
                0.97569432, 0.99453904], 'g/cm**3')
    """
    from yt.frontends.stream.data_structures import (
        StreamDataset,
        StreamDictFieldHandler,
        StreamHandler,
    )
    from yt.frontends.stream.definitions import (
        assign_particle_data,
        process_data,
        set_particle_types,
    )

    domain_dimensions = np.array(domain_dimensions)
    if bbox is None:
        bbox = np.array([[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]], "float64")
    domain_left_edge = np.array(bbox[:, 0], "float64")
    domain_right_edge = np.array(bbox[:, 1], "float64")
    grid_levels = np.zeros(nprocs, dtype="int32").reshape((nprocs, 1))
    # If someone included this throw it away--old API
    if "number_of_particles" in data:
        issue_deprecation_warning(
            "It is no longer necessary to include "
            "the number of particles in the data "
            "dict. The number of particles is "
            "determined from the sizes of the "
            "particle fields.",
            since="4.0.0",
            removal="4.1.0",
        )
        data.pop("number_of_particles")
    # First we fix our field names, apply units to data
    # and check for consistency of field shapes
    field_units, data, number_of_particles = process_data(
        data, grid_dims=tuple(domain_dimensions)
    )

    sfh = StreamDictFieldHandler()

    if number_of_particles > 0:
        particle_types = set_particle_types(data)
        # Used much further below.
        pdata = {"number_of_particles": number_of_particles}
        for key in list(data.keys()):
            if len(data[key].shape) == 1 or key[0] == "io":
                if not isinstance(key, tuple):
                    field = ("io", key)
                    mylog.debug("Reassigning '%s' to '%s'", key, field)
                else:
                    field = key
                sfh._additional_fields += (field,)
                pdata[field] = data.pop(key)
    else:
        particle_types = {}

    if nprocs > 1:
        temp = {}
        new_data = {}
        for key in data.keys():
            psize = get_psize(np.array(data[key].shape), nprocs)
            grid_left_edges, grid_right_edges, shapes, slices = decompose_array(
                data[key].shape, psize, bbox
            )
            grid_dimensions = np.array([shape for shape in shapes], dtype="int32")
            temp[key] = [data[key][slice] for slice in slices]
        for gid in range(nprocs):
            new_data[gid] = {}
            for key in temp.keys():
                new_data[gid].update({key: temp[key][gid]})
        sfh.update(new_data)
        del new_data, temp
    else:
        sfh.update({0: data})
        grid_left_edges = domain_left_edge
        grid_right_edges = domain_right_edge
        grid_dimensions = domain_dimensions.reshape(nprocs, 3).astype("int32")

    if length_unit is None:
        length_unit = "code_length"
    if mass_unit is None:
        mass_unit = "code_mass"
    if time_unit is None:
        time_unit = "code_time"
    if velocity_unit is None:
        velocity_unit = "code_velocity"
    if magnetic_unit is None:
        magnetic_unit = "code_magnetic"

    handler = StreamHandler(
        grid_left_edges,
        grid_right_edges,
        grid_dimensions,
        grid_levels,
        -np.ones(nprocs, dtype="int64"),
        np.zeros(nprocs, dtype="int64").reshape(nprocs, 1),  # particle count
        np.zeros(nprocs).reshape((nprocs, 1)),
        sfh,
        field_units,
        (length_unit, mass_unit, time_unit, velocity_unit, magnetic_unit),
        particle_types=particle_types,
        periodicity=periodicity,
    )

    handler.name = "UniformGridData"
    handler.domain_left_edge = domain_left_edge
    handler.domain_right_edge = domain_right_edge
    handler.refine_by = 2
    if np.all(domain_dimensions[1:] == 1):
        dimensionality = 1
    elif domain_dimensions[2] == 1:
        dimensionality = 2
    else:
        dimensionality = 3
    handler.dimensionality = dimensionality
    handler.domain_dimensions = domain_dimensions
    handler.simulation_time = sim_time
    handler.cosmology_simulation = 0

    sds = StreamDataset(handler, geometry=geometry, unit_system=unit_system)

    # Now figure out where the particles go
    if number_of_particles > 0:
        # This will update the stream handler too
        assign_particle_data(sds, pdata, bbox)

    return sds