Пример #1
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('boxlib', 'radial_velocity')
    ds._get_field_info(field).take_log = False

    sc = Scene()

    # add a volume: select a sphere
    center = (0, 0, 0)
    R = (5.e8, 'cm')

    dd = ds.sphere(center, R)

    vol = VolumeSource(dd, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)

    # transfer function
    vals = [-5.e6, -2.5e6, -1.25e6, 1.25e6, 2.5e6, 5.e6]
    sigma = 3.e5

    tf = yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    for v in vals:
        tf.sample_colormap(v, sigma**2, colormap=cm)  #, alpha=0.2)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")
    cam.resolution = (1280, 720)
    cam.position = 1.5 * ds.arr(np.array([5.e8, 5.e8, 5.e8]), 'cm')

    # look toward the center -- we are dealing with an octant
    center = ds.domain_left_edge
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    #sc.annotate_axes()
    #sc.annotate_domain(ds)

    sc.render()
    sc.save("subchandra_test.png", sigma_clip=6.0)
    sc.save_annotated(
        "subchandra_test_annotated.png",
        text_annotate=[[(0.05, 0.05), "t = {}".format(ds.current_time.d),
                        dict(horizontalalignment="left")],
                       [(0.5, 0.95),
                        "Maestro simulation of He convection on a white dwarf",
                        dict(color="y",
                             fontsize="24",
                             horizontalalignment="center")]])
Пример #2
0
 def test_perspective_lens(self):
     sc = Scene()
     cam = sc.add_camera(self.ds, lens_type='perspective')
     cam.position = self.ds.arr(np.array([1.0, 1.0, 1.0]), 'code_length')
     vol = VolumeSource(self.ds, field=self.field)
     tf = vol.transfer_function
     tf.grey_opacity = True
     sc.add_source(vol)
     sc.render()
     sc.save('test_perspective_%s.png' % self.field[1], sigma_clip=6.0)
Пример #3
0
 def test_spherical_lens(self):
     sc = Scene()
     cam = sc.add_camera(self.ds, lens_type='spherical')
     cam.resolution = [512, 256]
     cam.position = self.ds.arr(np.array([0.6, 0.5, 0.5]), 'code_length')
     vol = VolumeSource(self.ds, field=self.field)
     tf = vol.transfer_function
     tf.grey_opacity = True
     sc.add_source(vol)
     sc.render()
     sc.save('test_spherical_%s.png' % self.field[1], sigma_clip=6.0)
Пример #4
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    cm = "coolwarm"

    field = ('boxlib', 'radial_velocity')
    ds._get_field_info(field).take_log = False

    sc = Scene()

    # add a volume: select a sphere
    #center = (0, 0, 0)
    #R = (5.e8, 'cm')

    #dd = ds.sphere(center, R)

    vol = VolumeSource(ds, field=field)
    sc.add_source(vol)

    # transfer function
    vals = [-5.e5, -2.5e5, -1.25e5, 1.25e5, 2.5e5, 5.e5]
    sigma = 3.e4

    tf = yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    for v in vals:
        tf.sample_colormap(v, sigma**2, colormap=cm)  #, alpha=0.2)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")
    cam.resolution = (1080, 1080)
    cam.position = 1.0 * ds.domain_right_edge

    # look toward the center -- we are dealing with an octant
    center = ds.domain_left_edge
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    sc.camera = cam
    #sc.annotate_axes(alpha=0.05)
    #sc.annotate_domain(ds, color=np.array([0.05, 0.05, 0.05, 0.05]))
    #sc.annotate_grids(ds, alpha=0.05)

    sc.render()
    sc.save("{}_radvel".format(plotfile), sigma_clip=4.0)
Пример #5
0
 def test_plane_lens(self):
     dd = self.ds.sphere(self.ds.domain_center,
                         self.ds.domain_width[0] / 10)
     sc = Scene()
     cam = sc.add_camera(dd, lens_type='plane-parallel')
     cam.set_width(self.ds.domain_width * 1e-2)
     v, c = self.ds.find_max('density')
     vol = VolumeSource(dd, field=self.field)
     tf = vol.transfer_function
     tf.grey_opacity = True
     sc.add_source(vol)
     sc.render()
     sc.save('test_plane_%s.png' % self.field[1], sigma_clip=6.0)
Пример #6
0
 def test_fisheye_lens(self):
     dd = self.ds.sphere(self.ds.domain_center,
                         self.ds.domain_width[0] / 10)
     sc = Scene()
     cam = sc.add_camera(dd, lens_type='fisheye')
     cam.lens.fov = 360.0
     cam.set_width(self.ds.domain_width)
     v, c = self.ds.find_max('density')
     cam.set_position(c - 0.0005 * self.ds.domain_width)
     vol = VolumeSource(dd, field=self.field)
     tf = vol.transfer_function
     tf.grey_opacity = True
     sc.add_source(vol)
     sc.render()
     sc.save('test_fisheye_%s.png' % self.field[1], sigma_clip=6.0)
Пример #7
0
    def test_points_vr(self):
        ds = fake_random_ds(64)
        dd = ds.sphere(ds.domain_center, 0.45 * ds.domain_width[0])
        ds.field_info[ds.field_list[0]].take_log = False

        sc = Scene()
        cam = sc.add_camera(ds)
        cam.resolution = (512, 512)
        vr = VolumeSource(dd, field=ds.field_list[0])
        vr.transfer_function.clear()
        vr.transfer_function.grey_opacity = False
        vr.transfer_function.map_to_colormap(0.0,
                                             1.0,
                                             scale=10.,
                                             colormap="Reds")
        sc.add_source(vr)

        cam.set_width(1.8 * ds.domain_width)
        cam.lens.setup_box_properties(cam)

        # DRAW SOME POINTS
        npoints = 1000
        vertices = np.random.random([npoints, 3])
        colors = np.random.random([npoints, 4])
        colors[:, 3] = 0.10

        points_source = PointSource(vertices, colors=colors)
        sc.add_source(points_source)
        im = sc.render()
        im.write_png("points.png")
        return im
Пример #8
0
    def test_composite_vr(self):
        ds = fake_random_ds(64)
        dd = ds.sphere(ds.domain_center, 0.45 * ds.domain_width[0])
        ds.field_info[ds.field_list[0]].take_log = False

        sc = Scene()
        cam = sc.add_camera(ds)
        cam.resolution = (512, 512)
        vr = VolumeSource(dd, field=ds.field_list[0])
        vr.transfer_function.clear()
        vr.transfer_function.grey_opacity = True
        vr.transfer_function.map_to_colormap(0.0, 1.0, scale=10.0, colormap="Reds")
        sc.add_source(vr)

        cam.set_width(1.8 * ds.domain_width)
        cam.lens.setup_box_properties(cam)

        # Create Arbitrary Z-buffer
        empty = cam.lens.new_image(cam)
        z = np.empty(empty.shape[:2], dtype="float64")
        # Let's put a blue plane right through the center
        z[:] = cam.width[2] / 2.0
        empty[:, :, 2] = 1.0  # Set blue to 1's
        empty[:, :, 3] = 1.0  # Set alpha to 1's
        zbuffer = ZBuffer(empty, z)
        zsource = OpaqueSource()
        zsource.set_zbuffer(zbuffer)
        sc.add_source(zsource)

        im = sc.render()
        im.write_png("composite.png")
Пример #9
0
def surface_mesh_render():
    images = []

    ds = fake_tetrahedral_ds()
    for field in ds.field_list:
        sc = Scene()
        sc.add_source(MeshSource(ds, field))
        sc.add_camera()
        im = sc.render()
        images.append(im)

    ds = fake_hexahedral_ds()
    for field in ds.field_list:
        sc = Scene()
        sc.add_source(MeshSource(ds, field))
        sc.add_camera()
        im = sc.render()
        images.append(im)

    return images
Пример #10
0
def composite_mesh_render(engine):
    ytcfg["yt", "ray_tracing_engine"] = engine
    ds = data_dir_load(hex8)
    sc = Scene()
    cam = sc.add_camera(ds)
    cam.focus = ds.arr([0.0, 0.0, 0.0], 'code_length')
    cam.set_position(ds.arr([-3.0, 3.0, -3.0], 'code_length'),
                     ds.arr([0.0, -1.0, 0.0], 'dimensionless'))
    cam.set_width = ds.arr([8.0, 8.0, 8.0], 'code_length')
    cam.resolution = (800, 800)
    ms1 = MeshSource(ds, ('connect1', 'diffused'))
    ms2 = MeshSource(ds, ('connect2', 'diffused'))
    sc.add_source(ms1)
    sc.add_source(ms2)
    im = sc.render()
    return compare(ds, im, "%s_composite_mesh_render" % engine)
Пример #11
0
    def test_composite_vr(self):
        ds = fake_random_ds(64)
        dd = ds.sphere(ds.domain_center, 0.45 * ds.domain_width[0])
        ds.field_info[ds.field_list[0]].take_log = False

        sc = Scene()
        cam = sc.add_camera(ds)
        cam.resolution = (512, 512)
        vr = create_volume_source(dd, field=ds.field_list[0])
        vr.transfer_function.clear()
        vr.transfer_function.grey_opacity = True
        vr.transfer_function.map_to_colormap(0.0,
                                             1.0,
                                             scale=3.0,
                                             colormap="Reds")
        sc.add_source(vr)

        cam.set_width(1.8 * ds.domain_width)
        cam.lens.setup_box_properties(cam)

        # DRAW SOME LINES
        npoints = 100
        vertices = np.random.random([npoints, 2, 3])
        colors = np.random.random([npoints, 4])
        colors[:, 3] = 0.10

        box_source = BoxSource(ds.domain_left_edge,
                               ds.domain_right_edge,
                               color=[1.0, 1.0, 1.0, 1.0])
        sc.add_source(box_source)

        LE = ds.domain_left_edge + np.array([0.1, 0.0, 0.3
                                             ]) * ds.domain_left_edge.uq
        RE = ds.domain_right_edge - np.array([0.1, 0.2, 0.3
                                              ]) * ds.domain_left_edge.uq
        color = np.array([0.0, 1.0, 0.0, 0.10])
        box_source = BoxSource(LE, RE, color=color)
        sc.add_source(box_source)

        line_source = LineSource(vertices, colors)
        sc.add_source(line_source)

        im = sc.render()
        im = ImageArray(im.d)
        im.write_png("composite.png")
        return im
Пример #12
0
# Plane-parallel lens
cam = sc.add_camera(ds, lens_type='plane-parallel')
# Set the resolution of tbe final projection.
cam.resolution = [250, 250]
# Set the location of the camera to be (x=0.2, y=0.5, z=0.5)
# For plane-parallel lens, the location info along the normal_vector (here
# is x=0.2) is ignored.
cam.position = ds.arr(np.array([0.2, 0.5, 0.5]), 'code_length')
# Set the orientation of the camera.
cam.switch_orientation(normal_vector=normal_vector, north_vector=north_vector)
# Set the width of the camera, where width[0] and width[1] specify the length and
# height of final projection, while width[2] in plane-parallel lens is not used.
cam.set_width(ds.domain_width * 0.5)
sc.add_source(vol)
sc.render()
sc.save('lens_plane-parallel.png', sigma_clip=6.0)

# Perspective lens
cam = sc.add_camera(ds, lens_type='perspective')
cam.resolution = [250, 250]
# Standing at (x=0.2, y=0.5, z=0.5), we look at the area of x>0.2 (with some open angle
# specified by camera width) along the positive x direction.
cam.position = ds.arr([0.2, 0.5, 0.5], 'code_length')
cam.switch_orientation(normal_vector=normal_vector, north_vector=north_vector)
# Set the width of the camera, where width[0] and width[1] specify the length and
# height of the final projection, while width[2] specifies the distance between the
# camera and the final image.
cam.set_width(ds.domain_width * 0.5)
sc.add_source(vol)
sc.render()
Пример #13
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('boxlib', 'radial_velocity')
    ds._get_field_info(field).take_log = False
        
    sc = Scene()


    # add a volume: select a sphere
    #center = (0, 0, 0)
    #R = (5.e8, 'cm')

    #dd = ds.sphere(center, R)

    vol = VolumeSource(ds, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)


    # transfer function
    vals = [-5.e6, -2.5e6, -1.25e6, 1.25e6, 2.5e6, 5.e6]
    sigma = 3.e5

    tf =  yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    for v in vals:
        tf.sample_colormap(v, sigma**2, colormap=cm) #, alpha=0.2)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")        
    cam.resolution = (1080, 1080)
    cam.position = 1.0*ds.domain_right_edge
    
    # look toward the center -- we set this depending on whether the plotfile
    # indicates it was an octant
    try: octant = ds.parameters["octant"]
    except: octant = True

    if octant:
        center = ds.domain_left_edge
    else:
        center = 0.5*(ds.domain_left_edge + ds.domain_right_edge)

    # unit vector connecting center and camera
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal,
                           north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    #sc.annotate_axes(alpha=0.05)
    #sc.annotate_domain(ds, color=np.array([0.05, 0.05, 0.05, 0.05]))
    #sc.annotate_grids(ds, alpha=0.05)

    sc.render()
    sc.save("{}_radvel".format(plotfile), sigma_clip=6.0)
    sc.save_annotated("{}_radvel_annotated.png".format(plotfile), 
                      text_annotate=[[(0.05, 0.05), 
                                      "t = {}".format(ds.current_time.d),
                                      dict(horizontalalignment="left")],
                                     [(0.5,0.95), 
                                      "Maestro simulation of He convection on a white dwarf",
                                      dict(color="y", fontsize="24",
                                           horizontalalignment="center")]])
Пример #14
0
def doit(plotfile, fname):

    ds = yt.load(plotfile)

    cm = "gist_rainbow"                                                         

    if fname == "vz":
        field = ('gas', 'velocity_z')
        use_log = False
        
        vals = [-1.e7, -5.e6, 5.e6, 1.e7]
        sigma = 5.e5

        fmt = None

        cm = "coolwarm"                                                         


    elif fname == "magvel":
        field = ('gas', 'velocity_magnitude')
        use_log = True
        
        vals = [1.e5, 3.16e5, 1.e6, 3.16e6, 1.e7]
        sigma = 0.1

    elif fname == "enucdot":
        field = ('boxlib', 'enucdot')
        use_log = True

        vals = [1.e16, 3.162e16, 1.e17, 3.162e17, 1.e18]
        vals = list(10.0**numpy.array([16.5, 17.0, 17.5, 18.0, 18.5]))
        sigma = 0.05

        fmt = "%.3g"
    


    # this is hackish, but there seems to be no better way to set whether
    # you are rendering logs
    ds._get_field_info(field).take_log = use_log

    # hack periodicity
    ds.periodicity = (True, True, True)

    mi = min(vals)
    ma = max(vals)
    
    if use_log:
        mi, ma = np.log10(mi), np.log10(ma)


    print mi, ma

        
    # setup the scene and camera
    sc = Scene()
    cam = Camera(ds, lens_type="perspective")

    # Set up the camera parameters: center, looking direction, width, resolution
    center = (ds.domain_right_edge + ds.domain_left_edge)/2.0
    xmax, ymax, zmax = ds.domain_right_edge                                     

    # this shows something face on                                              
    c = np.array([-8.0*xmax, center[1], center[2]])  

    # the normal vector should be pointing back through the center              
    L = center.d - c                                                            
    L = L/np.sqrt((L**2).sum())    

    north_vector=[0.0,0.0,1.0]

    cam.position = ds.arr(c)
    cam.switch_orientation(normal_vector=L, north_vector=north_vector)

    cam.set_width(ds.domain_width*4)

    cam.resolution = (720,720)

    # create the volume source
    vol = VolumeSource(ds, field=field)
    
    # Instantiate the ColorTransferfunction.
    tf = vol.transfer_function
    tf = ColorTransferFunction((mi, ma))
    #tf.grey_opacity=True                                  


    for v in vals:
        if use_log:
            tf.sample_colormap(math.log10(v), sigma**2, colormap=cm) #, alpha=0.2)
        else:
            print v
            tf.sample_colormap(v, sigma**2, colormap=cm) #, alpha=0.2)

    sc.camera = cam
    sc.add_source(vol)
    sc.render("test_perspective.png", clip_ratio=6.0)
Пример #15
0
def doit(plotfile, fname):

    ds = yt.load(plotfile)

    cm = "gist_rainbow"

    if fname == "vz":
        field = ('gas', 'velocity_z')
        use_log = False

        vals = [-1.e7, -5.e6, 5.e6, 1.e7]
        sigma = 5.e5

        fmt = None

        cm = "coolwarm"

    elif fname == "magvel":
        field = ('gas', 'velocity_magnitude')
        use_log = True

        vals = [1.e5, 3.16e5, 1.e6, 3.16e6, 1.e7]
        sigma = 0.1

    elif fname == "enucdot":
        field = ('boxlib', 'enucdot')
        use_log = True

        vals = [1.e16, 3.162e16, 1.e17, 3.162e17, 1.e18]
        vals = list(10.0**numpy.array([16.5, 17.0, 17.5, 18.0, 18.5]))
        sigma = 0.05

        fmt = "%.3g"

    # this is hackish, but there seems to be no better way to set whether
    # you are rendering logs
    ds._get_field_info(field).take_log = use_log

    # hack periodicity
    ds.periodicity = (True, True, True)

    mi = min(vals)
    ma = max(vals)

    if use_log:
        mi, ma = np.log10(mi), np.log10(ma)

    print mi, ma

    # setup the scene and camera
    sc = Scene()
    cam = Camera(ds, lens_type="perspective")

    # Set up the camera parameters: center, looking direction, width, resolution
    center = (ds.domain_right_edge + ds.domain_left_edge) / 2.0
    xmax, ymax, zmax = ds.domain_right_edge

    # this shows something face on
    c = np.array([-8.0 * xmax, center[1], center[2]])

    # the normal vector should be pointing back through the center
    L = center.d - c
    L = L / np.sqrt((L**2).sum())

    north_vector = [0.0, 0.0, 1.0]

    cam.position = ds.arr(c)
    cam.switch_orientation(normal_vector=L, north_vector=north_vector)

    cam.set_width(ds.domain_width * 4)

    cam.resolution = (720, 720)

    # create the volume source
    vol = VolumeSource(ds, field=field)

    # Instantiate the ColorTransferfunction.
    tf = vol.transfer_function
    tf = ColorTransferFunction((mi, ma))
    #tf.grey_opacity=True

    for v in vals:
        if use_log:
            tf.sample_colormap(math.log10(v), sigma**2,
                               colormap=cm)  #, alpha=0.2)
        else:
            print v
            tf.sample_colormap(v, sigma**2, colormap=cm)  #, alpha=0.2)

    sc.camera = cam
    sc.add_source(vol)
    sc.render("test_perspective.png", clip_ratio=6.0)
Пример #16
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('gas', 'velocity_z')
    ds._get_field_info(field).take_log = False

    sc = Scene()

    # add a volume: select a sphere
    #center = (0, 0, 0)
    #R = (5.e8, 'cm')

    #dd = ds.sphere(center, R)

    vol = VolumeSource(ds, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)

    # transfer function
    vals = [-1.e7, -5.e6, 5.e6, 1.e7]
    sigma = 5.e5

    tf = yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    for v in vals:
        tf.sample_colormap(v, sigma**2, colormap=cm)  #, alpha=0.2)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")
    cam.resolution = (1920, 1080)

    center = 0.5 * (ds.domain_left_edge + ds.domain_right_edge)

    cam.position = [
        2.5 * ds.domain_right_edge[0], 2.5 * ds.domain_right_edge[1],
        center[2] + 0.25 * ds.domain_right_edge[2]
    ]

    # look toward the center -- we are dealing with an octant
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    sc.camera = cam
    #sc.annotate_axes(alpha=0.05)
    #sc.annotate_domain(ds, color=np.array([0.05, 0.05, 0.05, 0.05]))
    #sc.annotate_grids(ds, alpha=0.05)

    sc.render()
    sc.save("{}_radvel".format(plotfile), sigma_clip=4.0)
    sc.save_annotated(
        "{}_radvel_annotated.png".format(plotfile),
        sigma_clip=4.0,
        text_annotate=[[(0.05, 0.05), "t = {}".format(ds.current_time.d),
                        dict(horizontalalignment="left")],
                       [(0.5, 0.95),
                        "Maestro simulation of convection in a mixed H/He XRB",
                        dict(color="y",
                             fontsize="24",
                             horizontalalignment="center")]])
Пример #17
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('boxlib', 'density')
    ds._get_field_info(field).take_log = True

    sc = Scene()

    # add a volume: select a sphere
    vol = VolumeSource(ds, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)

    # transfer function
    vals = [-1, 0, 1, 2, 3, 4, 5, 6, 7]
    #vals = [0.1, 1.0, 10, 100., 1.e4, 1.e5, 1.e6, 1.e7]
    sigma = 0.1

    tf = yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    cm = "spectral"
    for v in vals:
        if v < 3:
            alpha = 0.1
        else:
            alpha = 0.5
        tf.sample_colormap(v, sigma**2, colormap=cm, alpha=alpha)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")
    cam.resolution = (1920, 1080)
    cam.position = 1.5 * ds.arr(np.array([0.0, 5.e9, 5.e9]), 'cm')

    # look toward the center -- we are dealing with an octant
    center = 0.5 * (ds.domain_left_edge + ds.domain_right_edge)
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    #sc.annotate_axes()
    #sc.annotate_domain(ds)

    pid = plotfile.split("plt")[1]
    sc.render()
    sc.save("wdmerger_{}_new.png".format(pid), sigma_clip=6.0)
    sc.save_annotated(
        "wdmerger_annotated_{}_new.png".format(pid),
        text_annotate=
        [[(0.05, 0.05), "t = {:.3f} s".format(float(ds.current_time.d)),
          dict(horizontalalignment="left")],
         [(0.5, 0.95),
          "Castro simulation of merging white dwarfs (0.6 $M_\odot$ + 0.9 $M_\odot$)",
          dict(color="y", fontsize="22", horizontalalignment="center")],
         [(0.95, 0.05), "M. Katz et al.",
          dict(color="w", fontsize="16", horizontalalignment="right")]])
Пример #18
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('boxlib', 'density')
    ds._get_field_info(field).take_log = True

    sc = Scene()

    # add a volume: select a sphere
    vol = VolumeSource(ds, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)

    # transfer function
    vals = [-1, 0, 1, 2, 3, 4, 5, 6, 7]
    #vals = [0.1, 1.0, 10, 100., 1.e4, 1.e5, 1.e6, 1.e7]
    sigma = 0.1

    tf = yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    cm = "spectral"
    for v in vals:
        if v < 3:
            alpha = 0.1
        else:
            alpha = 0.5
        tf.sample_colormap(v, sigma**2, colormap=cm, alpha=alpha)

    sc.get_source(0).transfer_function = tf

    # for spherical, youtube recommends an "equirectangular" aspect ratio
    # (2:1), suggested resolution of 8192 x 4096
    # see: https://support.google.com/youtube/answer/6178631?hl=en
    #
    # also see: http://yt-project.org/docs/dev/cookbook/complex_plots.html#various-lens-types-for-volume-rendering
    # the 2:1 is 2*pi in phi and pi in theta
    cam = sc.add_camera(ds, lens_type="spherical")
    #cam.resolution = (8192, 4096)
    cam.resolution = (4096, 2048)

    # look toward the +x initially
    cam.focus = ds.arr(np.array([ds.domain_left_edge[0], 0.0, 0.0]), 'cm')

    # center of the domain -- eventually we might want to do the
    # center of mass
    cam.position = ds.arr(np.array([0.0, 0.0, 0.0]), 'cm')

    # define up
    cam.north_vector = np.array([0., 0., 1.])

    normal = (cam.focus - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0., 0., 1.])

    # there is no such thing as a camera width -- the entire volume is rendered
    #cam.set_width(ds.domain_width)

    #sc.annotate_axes()
    #sc.annotate_domain(ds)

    pid = plotfile.split("plt")[1]
    sc.render()
    sc.save("wdmerger_{}_spherical.png".format(pid), sigma_clip=6.0)
Пример #19
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('boxlib', 'radial_velocity')
    ds._get_field_info(field).take_log = False
        
    sc = Scene()


    # add a volume: select a sphere
    center = (0, 0, 0)
    R = (5.e8, 'cm')

    dd = ds.sphere(center, R)

    vol = VolumeSource(dd, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)


    # transfer function
    vals = [-5.e6, -2.5e6, -1.25e6, 1.25e6, 2.5e6, 5.e6]
    sigma = 3.e5

    tf =  yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    for v in vals:
        tf.sample_colormap(v, sigma**2, colormap=cm) #, alpha=0.2)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")        
    cam.resolution = (1280, 720)
    cam.position = 1.5*ds.arr(np.array([5.e8, 5.e8, 5.e8]), 'cm')
    
    # look toward the center -- we are dealing with an octant
    center = ds.domain_left_edge
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal,
                           north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    #sc.annotate_axes()
    #sc.annotate_domain(ds)

    sc.render()
    sc.save("subchandra_test.png", sigma_clip=6.0)
    sc.save_annotated("subchandra_test_annotated.png", 
                      text_annotate=[[(0.05, 0.05), 
                                      "t = {}".format(ds.current_time.d),
                                      dict(horizontalalignment="left")],
                                     [(0.5,0.95), 
                                      "Maestro simulation of He convection on a white dwarf",
                                      dict(color="y", fontsize="24",
                                           horizontalalignment="center")]])
Пример #20
0
    def test_lazy_volume_source_construction(self):
        sc = Scene()
        source = create_volume_source(self.ds.all_data(), "density")

        assert source._volume is None
        assert source._transfer_function is None

        source.tfh.bounds = (0.1, 1)

        source.set_log(False)

        assert not source.log_field
        assert source.transfer_function.x_bounds == [0.1, 1]
        assert source._volume is None

        source.set_log(True)

        assert source.log_field
        assert source.transfer_function.x_bounds == [-1, 0]
        assert source._volume is None

        source.transfer_function = None
        source.tfh.bounds = None

        ad = self.ds.all_data()

        np.testing.assert_allclose(
            source.transfer_function.x_bounds,
            np.log10(ad.quantities.extrema("density")),
        )
        assert source.tfh.log == source.log_field

        source.set_field("velocity_x")
        source.set_log(False)

        assert source.transfer_function.x_bounds == list(
            ad.quantities.extrema("velocity_x")
        )
        assert source._volume is None

        source.set_field("density")

        assert source.volume is not None
        assert not source.volume._initialized
        assert source.volume.fields is None

        del source.volume
        assert source._volume is None

        sc.add_source(source)

        sc.add_camera()

        sc.render()

        assert source.volume is not None
        assert source.volume._initialized
        assert source.volume.fields == [("gas", "density")]
        assert source.volume.log_fields == [True]

        source.set_field("velocity_x")
        source.set_log(False)

        sc.render()

        assert source.volume is not None
        assert source.volume._initialized
        assert source.volume.fields == [("gas", "velocity_x")]
        assert source.volume.log_fields == [False]
Пример #21
0
def vol_render_density(outfile, ds):
    """Volume render the density given a yt dataset."""

    import numpy as np
    import yt
    import matplotlib
    matplotlib.use('agg')
    from yt.visualization.volume_rendering.api import Scene, VolumeSource
    import matplotlib.pyplot as plt

    ds.periodicity = (True, True, True)

    field = ('boxlib', 'density')
    ds._get_field_info(field).take_log = True

    sc = Scene()

    # Add a volume: select a sphere

    vol = VolumeSource(ds, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)

    # Transfer function

    vals = [-1, 0, 1, 2, 3, 4, 5, 6, 7]
    sigma = 0.1

    tf = yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()

    cm = "spectral"

    for v in vals:
        if v < 3:
            alpha = 0.1
        else:
            alpha = 0.5
        tf.sample_colormap(v, sigma**2, colormap=cm, alpha=alpha)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")
    cam.resolution = (1920, 1080)

    center = 0.5 * (ds.domain_left_edge + ds.domain_right_edge)
    width = ds.domain_width

    # Set the camera so that we're looking down on the xy plane from a 45
    # degree angle. We reverse the y-coordinate since yt seems to use the
    # opposite orientation convention to us (where the primary should be
    # on the left along the x-axis). We'll scale the camera position based
    # on a zoom factor proportional to the width of the domain.

    zoom_factor = 0.75

    cam_position = np.array([
        center[0], center[1] - zoom_factor * width[1],
        center[2] + zoom_factor * width[2]
    ])

    cam.position = zoom_factor * ds.arr(cam_position, 'cm')

    # Set the normal vector so that we look toward the center.

    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0.0, 0.0, 1.0])
    cam.set_width(width)

    # Render the image.

    sc.render()

    # Save the image without annotation.

    sc.save(outfile, sigma_clip=6.0)

    # Save the image with a colorbar.

    sc.save_annotated(outfile.replace(".png", "_colorbar.png"), sigma_clip=6.0)

    # Save the image with a colorbar and the current time.

    sc.save_annotated(outfile.replace(".png", "_colorbar_time.png"),
                      sigma_clip=6.0,
                      text_annotate=[[
                          (0.05, 0.925),
                          "t = {:.2f} s".format(float(ds.current_time.d)),
                          dict(horizontalalignment="left", fontsize="20")
                      ]])
Пример #22
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    cm = "coolwarm"

    field = ('boxlib', 'density')
    ds._get_field_info(field).take_log = True
        
    sc = Scene()


    # add a volume: select a sphere
    vol = VolumeSource(ds, field=field)
    sc.add_source(vol)


    # transfer function
    vals = [-1, 0, 1, 2, 4, 5, 6, 7]
    #vals = [0.1, 1.0, 10, 100., 1.e4, 1.e5, 1.e6, 1.e7]
    sigma = 0.1

    tf =  yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    cm = "spectral"
    for v in vals:
        if v < 4:
            alpha = 0.1
        else:
            alpha = 0.5
        tf.sample_colormap(v, sigma**2, colormap=cm, alpha=alpha)

    sc.get_source(0).transfer_function = tf

        
    cam = Camera(ds, lens_type="perspective")
    cam.resolution = (1280, 720)
    cam.position = 1.5*ds.arr(np.array([0.0, 5.e9, 5.e9]), 'cm')
    
    # look toward the center -- we are dealing with an octant
    center = 0.5*(ds.domain_left_edge + ds.domain_right_edge)
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal,
                           north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    sc.camera = cam
    #sc.annotate_axes()
    #sc.annotate_domain(ds)

    pid = plotfile.split("plt")[1]
    sc.render()
    sc.save("wdmerger_{}.png".format(pid), sigma_clip=6.0)
    sc.save_annotated("wdmerger_annotated_{}.png".format(pid), 
                      text_annotate=[[(0.05, 0.05), 
                                      "t = {:.3f}".format(float(ds.current_time.d)),
                                      dict(horizontalalignment="left")],
                                     [(0.5,0.95), 
                                      "Castro simulation of merging white dwarfs",
                                      dict(color="y", fontsize="24",
                                           horizontalalignment="center")]])
Пример #23
0
# Add sources to scene
sc.add_source(so_pos_enuc)
sc.add_source(so_neg_enuc)

# Add camera to scene
sc.add_camera()

# Set camera properties
sc.camera.focus = ds.domain_center
sc.camera.resolution = 2048
sc.camera.north_vector = [0, 0, 1]
sc.camera.position = ds.domain_center + [1.0, 1.0, 1.0] * ds.domain_width * args.rup/5.12e8
#sc.camera.zoom(2.5*args.zoom)

# Annotate domain - draw boundaries
if args.drawdomain:
    sc.annotate_domain(ds, color=[1, 1, 1, 0.2])

# Annotate by drawing grids
if args.drawgrids:
    sc.annotate_grids(ds, alpha=0.2)

# Annotate by drawing axes triad
if args.drawaxes:
    sc.annotate_axes(alpha=0.2) 

# Render
sc.render()
sc.save('{}_rendering_enucdot.png'.format(args.infile))
Пример #24
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('gas', 'velocity_z')
    ds._get_field_info(field).take_log = False
        
    sc = Scene()


    # add a volume: select a sphere
    #center = (0, 0, 0)
    #R = (5.e8, 'cm')

    #dd = ds.sphere(center, R)

    vol = VolumeSource(ds, field=field)
    vol.use_ghost_zones = True

    sc.add_source(vol)


    # transfer function
    vals = [-1.e7, -5.e6, 5.e6, 1.e7]
    sigma = 5.e5

    tf =  yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()
    cm = "coolwarm"
    for v in vals:
        tf.sample_colormap(v, sigma**2, colormap=cm) #, alpha=0.2)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")        
    cam.resolution = (1920, 1080)

    center = 0.5*(ds.domain_left_edge + ds.domain_right_edge)

    cam.position = [2.5*ds.domain_right_edge[0],
                    2.5*ds.domain_right_edge[1],
                    center[2]+0.25*ds.domain_right_edge[2]]
    
    # look toward the center -- we are dealing with an octant
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal,
                           north_vector=[0., 0., 1.])
    cam.set_width(ds.domain_width)

    sc.camera = cam
    #sc.annotate_axes(alpha=0.05)
    #sc.annotate_domain(ds, color=np.array([0.05, 0.05, 0.05, 0.05]))
    #sc.annotate_grids(ds, alpha=0.05)

    sc.render()
    sc.save("{}_radvel".format(plotfile), sigma_clip=4.0)
    sc.save_annotated("{}_radvel_annotated.png".format(plotfile),
                      sigma_clip=4.0, 
                      text_annotate=[[(0.05, 0.05), 
                                      "t = {}".format(ds.current_time.d),
                                      dict(horizontalalignment="left")],
                                     [(0.5,0.95), 
                                      "Maestro simulation of convection in a mixed H/He XRB",
                                      dict(color="y", fontsize="24",
                                           horizontalalignment="center")]])
Пример #25
0
def doit(plotfile):

    ds = yt.load(plotfile)
    ds.periodicity = (True, True, True)

    field = ('boxlib', 'Hnuc')
    ds._get_field_info(field).take_log = True

    sc = Scene()

    # add a volume: select a sphere
    #center = (0, 0, 0)
    #R = (5.e8, 'cm')

    #dd = ds.sphere(center, R)

    vol = VolumeSource(ds, field=field)
    sc.add_source(vol)

    # transfer function
    vals = [14, 14.5, 15, 15.5, 16]
    sigma = 0.1

    tf = yt.ColorTransferFunction((min(vals), max(vals)))

    tf.clear()

    cm = "viridis"

    for v in vals:
        if v < 15.5:
            alpha = 0.1
        else:
            alpha = 0.75

        tf.sample_colormap(v, sigma**2, alpha=alpha, colormap=cm)

    sc.get_source(0).transfer_function = tf

    cam = sc.add_camera(ds, lens_type="perspective")
    cam.resolution = (1080, 1080)
    cam.position = 1.0 * ds.domain_right_edge

    # look toward the center -- we are dealing with an octant
    center = ds.domain_left_edge
    normal = (center - cam.position)
    normal /= np.sqrt(normal.dot(normal))

    cam.switch_orientation(normal_vector=normal, north_vector=[0., 0., 1.])
    cam.set_width(0.5 * ds.domain_width)
    cam.zoom(1.5)
    sc.camera = cam
    #sc.annotate_axes(alpha=0.05)
    #sc.annotate_domain(ds, color=np.array([0.05, 0.05, 0.05, 0.05]))
    #sc.annotate_grids(ds, alpha=0.05)

    sc.render()
    sc.save("{}_Hnuc".format(plotfile), sigma_clip=4.0)
    sc.save_annotated(
        "{}_Hnuc_annotated.png".format(plotfile),
        text_annotate=[[(0.05, 0.05), "t = {}".format(ds.current_time.d),
                        dict(horizontalalignment="left")],
                       [(0.5, 0.95), "MAESTROeX simulation of ECSN convection",
                        dict(color="y",
                             fontsize="24",
                             horizontalalignment="center")]])