Пример #1
0
htree = RecFunction('htree', fgsort, fgsetsort)
reach_lr = RecFunction('reach_lr', fgsort, fgsort, boolsort)
AddRecDefinition(
    tree, x,
    If(
        x == nil, True,
        And(
            notInChildren(x),
            And(
                SetIntersect(htree(lft(x)),
                             htree(rght(x))) == fgsetsort.lattice_bottom,
                And(tree(lft(x)), tree(rght(x)))))))
AddRecDefinition(
    htree, x,
    If(x == nil, fgsetsort.lattice_bottom,
       SetAdd(SetUnion(htree(lft(x)), htree(rght(x))), x)))
AddRecDefinition(
    reach_lr, (x, y),
    If(x == y, True, Or(reach_lr(lft(x), y), reach_lr(rght(x), y))))
AddAxiom((), lft(nil) == nil)
AddAxiom((), rght(nil) == nil)

# vc
goal = Implies(tree(x), Implies(reach_lr(x, y), tree(y)))

# check validity with natural proof solver and no hardcoded lemmas
np_solver = NPSolver()
solution = np_solver.solve(make_pfp_formula(goal))
if not solution.if_sat:
    print('goal (no lemmas) is valid')
else:
Пример #2
0
rght = Function('rght', fgsort, fgsort)
minr = Function('minr', fgsort, intsort)
maxr = Function('maxr', fgsort, intsort)
bst = RecFunction('bst', fgsort, boolsort)
hbst = RecFunction('hbst', fgsort, fgsetsort)
AddRecDefinition(minr, x, If(x == nil, 100, min_intsort(key(x), minr(lft(x)), minr(rght(x)))))
AddRecDefinition(maxr, x, If(x == nil, -1, max_intsort(key(x), maxr(lft(x)), maxr(rght(x)))))
AddRecDefinition(bst, x, If(x == nil, True,
                            And(0 < key(x),
                                And(key(x) < 100,
                                    And(bst(lft(x)),
                                        And(bst(rght(x)),
                                            And(maxr(lft(x)) <= key(x),
                                                key(x) <= minr(rght(x)))))))))
AddRecDefinition(hbst, x, If(x == nil, fgsetsort.lattice_bottom,
                             SetAdd(SetUnion(hbst(lft(x)), hbst(rght(x))), x)))
AddAxiom((), lft(nil) == nil)
AddAxiom((), rght(nil) == nil)

# Problem parameters
goal = Implies(bst(x), Implies(And(x != nil,
                                   And(IsMember(y, hbst(x)),
                                       And(k == minr(x),
                                           And(k == minr(y), y != nil)))),
                               k == minr(lft(y))))

# parameters representing the grammar for synth-fun and
# terms on which finite model is extracted
# TODO: extract this automatically from grammar_string
v = Var('v', fgsort)
lemma_grammar_args = [v, y, k, nil]
Пример #3
0
# projections for cons
head = Function('head', fgsort, intsort)
tail = Function('tail', fgsort, fgsort)

# rec defs
slst = RecFunction('slst', fgsort, boolsort)
elems = RecFunction('elems', fgsort, fgsetsort)
member = RecFunction('member', fgsort, boolsort)
AddRecDefinition(
    slst, l,
    If(l == nil, True,
       If(tail(l) == nil, True, And(head(l) <= head(tail(l)), slst(tail(l))))))
AddRecDefinition(
    elems, l,
    If(l == nil, fgsetsort.lattice_bottom, SetAdd(elems(tail(l)), head(l))))
AddRecDefinition(
    member, l,
    If(l == nil, False,
       If(k == head(l), True, If(k < head(l), False, member(tail(l))))))

# axioms
AddAxiom(l, head(cons(h, l)) == h)
AddAxiom(l, tail(cons(h, l)) == l)
AddAxiom(l, cons(h, l) != nil)

goal = Implies(And(slst(l), IsMember(k, elems(l))), member(l))

# adt pfp of goal
base_case = Implies(And(slst(nil), IsMember(k, elems(nil))), member(nil))
induction_hypothesis = Implies(And(slst(tl), IsMember(k, elems(tl))),
Пример #4
0
from naturalproofs.pfp import make_pfp_formula

from lemsynth.lemsynth_engine import solveProblem

# declarations
x, y = Vars('x y', fgsort)
nil = Const('nil', fgsort)
k = Const('k', intsort)
nxt = Function('nxt', fgsort, fgsort)
lst = RecFunction('lst', fgsort, boolsort)
lseg = RecFunction('lseg', fgsort, fgsort, boolsort)
key = Function('key', fgsort, intsort)
keys = RecFunction('keys', fgsort, intsetsort)
AddRecDefinition(lst, x, If(x == nil, True, lst(nxt(x))))
AddRecDefinition(lseg, (x, y) , If(x == y, True, lseg(nxt(x), y)))
AddRecDefinition(keys, x, If(x == nil, fgsetsort.lattice_bottom, SetAdd(keys(nxt(x)), key(x))))
AddAxiom((), nxt(nil) == nil)

# vc
goal = Implies(lseg(x, y), Implies(And(And(And(x != nil, y != nil), lst(x)), key(y) == k), IsMember(k, keys(x))))

# check validity with natural proof solver and no hardcoded lemmas
np_solver = NPSolver()
solution = np_solver.solve(make_pfp_formula(goal))
if not solution.if_sat:
    print('goal (no lemmas) is valid')
else:
    print('goal (no lemmas) is invalid')

# hardcoded lemma
lemma_params = (x,y)
Пример #5
0
signature = dict()
signature['x'] = x
signature['nil'] = nil
signature['lft'] = lft
signature['rght'] = rght
signature['parent'] = parent
signature['key'] = key
signature['tree'] = tree

# Additional recursive definitions
htree = RecFunction('htree', fgsort, fgsetsort)
AddRecDefinition(
    htree, x,
    If(x == nil, fgsetsort.lattice_bottom,
       SetAdd(SetUnion(htree(lft(x)), htree(rght(x))), x)))
minr = RecFunction('minr', fgsort, intsort)
AddRecDefinition(
    minr, x, If(x == nil, 100, min_intsort(key(x), minr(lft(x)),
                                           minr(rght(x)))))
maxr = RecFunction('maxr', fgsort, intsort)
AddRecDefinition(
    maxr, x,
    If(x == nil, -100, max_intsort(key(x), maxr(lft(x)), maxr(rght(x)))))

########## Variant dimensions ##########

## Variant dimension number of datafields
define_datafields = lambda datname, datnum: [
    Function(f'{datname}{str(i)}', fgsort, intsort)
    for i in range(1, datnum + 1)
Пример #6
0
from naturalproofs.prover import NPSolver
from naturalproofs.pfp import make_pfp_formula

from lemsynth.lemsynth_engine import solveProblem

# declarations
x, y = Vars('x y', fgsort)
nil = Const('nil', fgsort)
k = Const('k', intsort)
nxt = Function('nxt', fgsort, fgsort)
key = Function('key', fgsort, intsort)
lst = RecFunction('lst', fgsort, boolsort)
hlst = RecFunction('hlst', fgsort, fgsetsort)
lseg = RecFunction('lseg', fgsort, fgsort, boolsort)
AddRecDefinition(lst, x, If(x == nil, True, lst(nxt(x))))
AddRecDefinition(hlst, x, If(x == nil, fgsetsort.lattice_bottom, SetAdd(hlst(nxt(x)), x)))
AddRecDefinition(lseg, (x, y), If(x == y, True, lseg(nxt(x), y)))
AddAxiom((), nxt(nil) == nil)

# vc
goal = Implies(lst(x), Implies(key(x) != k, Implies(IsMember(y, hlst(x)), lseg(x,y))))

# check validity with natural proof solver and no hardcoded lemmas
np_solver = NPSolver()
solution = np_solver.solve(make_pfp_formula(goal))
if not solution.if_sat:
    print('goal (no lemmas) is valid')
else:
    print('goal (no lemmas) is invalid')

# hardcoded lemma
Пример #7
0
                And(
                    bst(lft(x)),
                    And(
                        bst(rght(x)),
                        And(
                            maxr(lft(x)) <= key(x),
                            And(
                                key(x) <= minr(rght(x)),
                                And(
                                    notInChildren(x),
                                    SetIntersect(hbst(lft(x)), hbst(rght(x)))
                                    == fgsetsort.lattice_bottom)))))))))
AddRecDefinition(
    hbst, x,
    If(x == nil, fgsetsort.lattice_bottom,
       SetAdd(SetUnion(hbst(lft(x)), hbst(rght(x))), x)))
AddRecDefinition(
    keys, x,
    If(x == nil, fgsetsort.lattice_bottom,
       SetAdd(SetUnion(keys(lft(x)), keys(rght(x))), key(x))))
AddAxiom((), lft(nil) == nil)
AddAxiom((), rght(nil) == nil)

# vc
goal = Implies(
    bst(x),
    Implies(And(IsMember(k, keys(x)), k < key(x), x != nil),
            IsMember(k, keys(lft(x)))))

# check validity with natural proof solver and no hardcoded lemmas
np_solver = NPSolver()
Пример #8
0
from lemsynth.lemsynth_engine import solveProblem

# declarations
x, y = Vars('x y', fgsort)
nil = Const('nil', fgsort)
k = Const('k', intsort)
nxt = Function('nxt', fgsort, fgsort)
lst = RecFunction('lst', fgsort, boolsort)
lseg = RecFunction('lseg', fgsort, fgsort, boolsort)
key = Function('key', fgsort, intsort)
keys = RecFunction('keys', fgsort, intsetsort)
AddRecDefinition(lst, x, If(x == nil, True, lst(nxt(x))))
AddRecDefinition(lseg, (x, y), If(x == y, True, lseg(nxt(x), y)))
AddRecDefinition(
    keys, x,
    If(x == nil, fgsetsort.lattice_bottom, SetAdd(keys(nxt(x)), key(x))))
AddAxiom((), nxt(nil) == nil)

# vc
goal = Implies(
    lst(x),
    Implies(And(And(y != nil, lseg(x, y)),
                key(y) == k), IsMember(k, keys(x))))

# check validity with natural proof solver and no hardcoded lemmas
np_solver = NPSolver()
solution = np_solver.solve(make_pfp_formula(goal))
if not solution.if_sat:
    print('goal (no lemmas) is valid')
else:
    print('goal (no lemmas) is invalid')
Пример #9
0
key = Function('key', fgsort, intsort)
keys = Function('keys', fgsort, intsetsort)
lft = Function('lft', fgsort, fgsort)
rght = Function('rght', fgsort, fgsort)
maxheap = RecFunction('maxheap', fgsort, boolsort)
htree = RecFunction('htree', fgsort, fgsetsort)
AddRecDefinition(maxheap, x, If(x == nil, True,
                                And(notInChildren(x),
                                    And(SetIntersect(htree(lft(x)), htree(rght(x)))
                                        == fgsetsort.lattice_bottom,
                                        And(maxheap(lft(x)),
                                            And(maxheap(rght(x)),
                                                And(key(lft(x)) <= key(x),
                                                    key(rght(x)) <= key(x))))))))
AddRecDefinition(htree, x, If(x == nil, fgsetsort.lattice_bottom,
                              SetAdd(SetUnion(htree(lft(x)), htree(rght(x))), x)))
AddRecDefinition(keys, x, If(x == nil, fgsetsort.lattice_bottom,
                             SetAdd(SetUnion(keys(lft(x)), keys(rght(x))), key(x))))
AddAxiom((), lft(nil) == nil)
AddAxiom((), rght(nil) == nil)

# vc
goal = Implies(maxheap(x), Implies(lft(x) != nil, Implies(IsMember(k, keys(x)), k <= key(x))))

# check validity with natural proof solver and no hardcoded lemmas
np_solver = NPSolver()
solution = np_solver.solve(make_pfp_formula(goal))
if not solution.if_sat:
    print('goal (no lemmas) is valid')
else:
    print('goal (no lemmas) is invalid')
Пример #10
0
# Declarations
x, y = Vars('x y', fgsort)
c, nil = Consts('c nil', fgsort)
key = Function('key', fgsort, intsort)
nxt = Function('nxt', fgsort, fgsort)
lst = RecFunction('lst', fgsort, boolsort)
lseg = RecFunction('lseg', fgsort, fgsort, boolsort)
keys = RecFunction('keys', fgsort, intsetsort)
lsegkeys = RecFunction('lsegkeys', fgsort, fgsort, intsetsort)

AddRecDefinition(lst, x, If(x == nil, True, lst(nxt(x))))
AddRecDefinition(lseg, (x, y), If(x == y, True, lseg(nxt(x), y)))

AddRecDefinition(
    keys, x,
    If(x == nil, intsetsort.lattice_bottom, SetAdd(keys(nxt(x)), key(x))))
AddRecDefinition(
    lsegkeys, (x, y),
    If(x == y, intsetsort.lattice_bottom, SetAdd(lsegkeys(nxt(x), y), key(x))))

AddAxiom((), nxt(nil) == nil)

# Problem parameters
pre = And(lst(y), x != c)
goal = Implies(lseg(x, y),
               Implies(pre,
                       keys(x) == SetUnion(lsegkeys(x, y), keys(y))))

# parameters representing the grammar for synth-fun and
# terms on which finite model is extracted
# TODO: extract this automatically from grammar_string
Пример #11
0
    bst, x,
    If(
        x == nil, True,
        And(
            0 < key(x),
            And(
                key(x) < 100,
                And(
                    bst(lft(x)),
                    And(bst(rght(x)),
                        And(maxr(lft(x)) <= key(x),
                            key(x) <= minr(rght(x)))))))))
AddRecDefinition(
    keys, x,
    If(x == nil, fgsetsort.lattice_bottom,
       SetAdd(SetUnion(keys(lft(x)), keys(rght(x))), key(x))))
AddAxiom((), lft(nil) == nil)
AddAxiom((), rght(nil) == nil)

# Problem parameters
goal = Implies(
    bst(x),
    Implies(And(IsMember(k, keys(x)), k < key(x)), IsMember(k, keys(lft(x)))))

# parameters representing the grammar for synth-fun and
# terms on which finite model is extracted
# TODO: extract this automatically from grammar_string
v = Var('v', fgsort)
lemma_grammar_args = [v, k, nil]
lemma_grammar_terms = {
    lft(v),