def solve(formulas): s = Solver() s.add(formulas) status = s.check(); print(status) if status == sat: m = s.model(); print(m) return m
def get_mus(constraints): ''' Returns a single MUS ''' seed = set(range(len(constraints))) idx2indicator = {i:Bool(str(i)) for i in seed} indicator2idx = {b.get_id():i for (i,b) in idx2indicator.items()} s = Solver() for i, b in idx2indicator.items(): s.add(Implies(b, constraints[i])) def check_subset(current_seed): assumptions = [idx2indicator[i] for i in current_seed] return (s.check(assumptions) == sat) current = set(seed) for i in seed: if i not in current: continue current.remove(i) if not check_subset(current): core = s.unsat_core() # FIXME: do constraints never show up in the core? Seems like we could get a key error current = set(indicator2idx[ind.get_id()] for ind in core) else: current.add(i) assert not check_subset(current), "Expecting unsat at end of get_mus" return [constraints[i] for i in current]
def xform_correct(x, typing): # type: (XForm, VarTyping) -> bool """ Given an XForm x and a concrete variable typing for x check whether x is semantically preserving for the concrete typing. """ assert x.ti.permits(typing) # Create copies of the x.src and x.dst with their concrete types src_m = {v: Var(v.name, typing[v]) for v in x.src.vars()} # type: VarAtomMap # noqa src = x.src.copy(src_m) dst = x.apply(src) dst_m = x.dst.substitution(dst, {}) # Build maps for the inputs/outputs for src->dst inp_m = {} # type: VarAtomMap out_m = {} # type: VarAtomMap for v in x.src.vars(): src_v = src_m[v] assert isinstance(src_v, Var) if v.is_input(): inp_m[src_v] = dst_m[v] elif v.is_output(): out_m[src_v] = dst_m[v] # Get the primitive semantic Rtls for src and dst prim_src = elaborate(src) prim_dst = elaborate(dst) asserts = equivalent(prim_src, prim_dst, inp_m, out_m) s = Solver() s.add(*asserts) return s.check() == unsat
def solve(self, board, pieces, sum_requirements=[]): if len(pieces) == 0: return [] solver = Solver() # Create z3 variables for each cell extended_board = [(row, column, value, Int(self.cell_name(row, column))) for (row, column, value) in board] constraints = \ self.set_prefilled_cell_values(extended_board) + \ self.set_possible_target_cell_values(extended_board, pieces) + \ self.require_unique_row_and_column_cells(extended_board) + \ self.match_sum_requirements(extended_board, sum_requirements) + \ self.target_cells_use_all_available_pieces(extended_board, pieces) for constraint in constraints: solver.add(constraint) if solver.check() == sat: model = solver.model() return [(row, column, model[cell].as_long()) for (row, column, value, cell) in extended_board if self.is_cell_empty(value)] else: return False
def solve(): start = time.time() s = Solver() s.reset() for req in conf.reqs: target = req[0] accessConstraint = req[1] requirementEncoding = encodeRequirement(target, accessConstraint) s.add(ForAll(template.getAttributeVars(), requirementEncoding)) timeToTranslate = time.time() - start measurements.addToTranslationTime(timeToTranslate) start = time.time() solution = None if s.check() == sat: solution = {} model = s.model() for PEP in conf.PEPS: solution[PEP] = template.PEPPolicy(PEP, model) else: solution = unsat timeToSolve = time.time() - start measurements.addToSMTTime(timeToSolve) return solution
def sat_solve_prev(keystream, next, prev): """Find previous keystream by solving boolean satisfiability problem. Parameters ---------- keystream : list of bool Current keystream converted to list of boolean representing binary values next : list of z3.BoolRef list containing bit triplet DNF constraints from the original next() prev : list of z3.BoolRef list containing bool representation of the previous keystream, to be used as an index for Solver().model() Returns ------- keystream : list of bool bool representation of keystream input from the previous call of next() """ solver = Solver() for idx in range(N): # add next keystream bools as constraints solver.add(next[idx] == keystream[idx]) # check() should be 'sat' because we know we can get back to seed with # these constraints, but we want to catch semantic errors just in case if solver.check() == unsat: raise Exception('Error in SAT DNF constraints') model = solver.model() # replace current keystream with solved previous values for idx in range(N): keystream[idx] = bool(model[prev[idx]]) return keystream
def z3_solve(self, n, timeout_amount): """ Integer factorization using z3 theorem prover implementation: We can factor composite integers by SAT solving the model N=PQ directly using the clasuse (n==p*q), wich gives a lot of degree of freedom to z3, so we want to contraint the search space. Since every composite number n=pq, there always exists some p>sqrt(n) and q<sqrt(n). We can safely asume the divisor p is in the range n > p >= next_prime(sqrt(n)) if this later clause doesn't hold and sqrt(p) is prime the number is a perfect square. We can also asume that p and q are alyaws odd otherwise our whole composite is even. Not all composite numbers generate a valid model that z3 can SAT. SAT solving is efficient with low bit count set in the factors, the complexity of the algorithm grows exponential with every bit set. The problem of SAT solving integer factorization still is NP complete, making this just a showcase. Don't expect big gains. """ s = Solver() s.set("timeout", timeout_amount * 1000) p = Int("p") q = Int("q") i = int(isqrt(n)) np = int(next_prime(i)) s.add(p * q == n, n > p, n > q, p >= np, q < i, q > 1, p > 1, q % 2 != 0, p % 2 != 0) try: s_check_output = s.check() if s_check_output == sat: res = s.model() P, Q = res[p].as_long(), res[q].as_long() assert P * Q == n return P, Q else: return None, None except: return None, None
def main(): if len(sys.argv) != 2 or sys.argv[1] in ("-h", "help"): print("Usage:", sys.argv[0], "NONOGRAMM-FILE") exit(1) elif not os.path.isfile(sys.argv[1]): print("'{}' is not a valid file".format(sys.argv[1])) exit(1) nonogramm = Nonogramm.from_file(sys.argv[1]) if nonogramm is None: print("'{}' doesn't contain a valid nonogramm".format(sys.argv[1])) exit(2) solver = Solver() print("Generating constraints ...") for constraint in nonogramm.gen_constraints(): solver.add(simplify(constraint)) print("Solving...") if solver.check() == sat: print("Solved:") nonogramm.print_grid(solver.model()) else: print("Unsolvable!")
class SudokuSolver: def __init__(self): self.rows, self.cols = '012345678', '012345678' self.positions = list( map(lambda a: a[0] + a[1], product(self.rows, self.cols))) self.symbols = {pos: Int(pos) for pos in self.positions} self.solver = None def solve(self, problem): self.set_conditions(problem) if self.solver.check() != sat: raise Exception("No solution.") model = self.solver.model() solution = { pos: int(model.evaluate(s).as_string()) for pos, s in self.symbols.items() } return np.array(list(solution.values())).reshape(9, 9) def set_conditions(self, problem): self._initialize_solver() self._add_value_conditions() self._add_row_conditions() self._add_col_conditions() self._add_block_conditions() self._import_problem(problem) def _initialize_solver(self): self.solver = Solver() def _add_value_conditions(self): for symbol in self.symbols.values(): self.solver.add(Or([symbol == i for i in range(1, 10)])) def _add_row_conditions(self): for row in self.rows: self.solver.add( Distinct([self.symbols[row + col] for col in self.cols])) def _add_col_conditions(self): for col in self.cols: self.solver.add( Distinct([self.symbols[row + col] for row in self.rows])) def _add_block_conditions(self): for i, j in product(range(3), repeat=2): blocks = [ self.symbols[self.rows[m + 3 * i] + self.cols[n + 3 * j]] for m, n in product(range(3), repeat=2) ] self.solver.add(Distinct(blocks)) def _import_problem(self, problem): for row, col, value in zip(*np.nonzero(problem) + (problem[np.nonzero(problem)], )): pos = str(row) + str(col) self.solver.add(self.symbols[pos] == str(value))
def trim_unrechable_states(self): # (parent, trace, child) tuples pending_parent_trace_child_tuples = [(None, None, self.root_wstate)] deleted_counter = 0 s = Solver() while(len(pending_parent_trace_child_tuples)): s.push() parent_wstate, trace, curr_wstate = pending_parent_trace_child_tuples.pop() if curr_wstate.status != WorldStateStatus.REACHABLE: s.add(curr_wstate.constraints) res = s.check() if res == sat: curr_wstate.status = WorldStateStatus.REACHABLE elif res == unsat: curr_wstate.status = WorldStateStatus.UNREACHABLE elif res == z3.unknown: print(curr_wstate.get_full_trace()) raise Exception("pdb") if curr_wstate.status == WorldStateStatus.REACHABLE: if curr_wstate != self.root_wstate: parent_wstate.trace_to_children[trace].append(curr_wstate) for child_trace, children in curr_wstate.trace_to_children.items(): for child_wstate in children: pending_parent_trace_child_tuples.append((curr_wstate, child_trace, child_wstate)) curr_wstate.trace_to_children.clear() else: curr_wstate.status = WorldStateStatus.DELETED self.gen_to_wstates[curr_wstate.gen].remove(curr_wstate) deleted_counter += 1 s.pop() logging.info('%d WorldStates are deleted', deleted_counter) logging.info('SVM initialized')
def find_max(constraints, expr, l = None): if l is None: l = logger if type(expr) == int: return expr constraint_strs = [f'{c}' for c in constraints] max_optimize = Optimize() max_optimize.set('timeout', 10000) max_optimize.assert_exprs(*constraints) max_optimize.maximize(expr) status = max_optimize.check() if status != sat: l.warning(f'Unable to find max ({status}) for:\n' + '\n'.join(constraint_strs)) return None max_val = max_optimize.model().eval(expr).as_long() # Make sure it's actually the max, since z3 has a bug # https://github.com/Z3Prover/z3/issues/4670 solver = Solver() solver.set('timeout', 10000) solver.add(constraints + [expr > max_val]) status = solver.check() if status != unsat: l.error(f'Z3 bug\nFind max ({expr}) => {max_val} with status ({status}):\n' + '\n'.join(constraint_strs)) return None return max_val
def find_min(constraints, expr, default_min=0): if type(expr) == int: return expr constraint_strs = [f'{c}' for c in constraints] min_optimize = Optimize() min_optimize.set('timeout', 10000) min_optimize.assert_exprs(*constraints) min_optimize.minimize(expr) status = min_optimize.check() if status != sat: print(f'Unable to find min ({status}) for:\n' + '\n'.join(constraint_strs)) return None min_val = min_optimize.model().eval(expr).as_long() # Make sure it's actually the min, since z3 has a bug # https://github.com/Z3Prover/z3/issues/4670 solver = Solver() solver.set('timeout', 10000) solver.add(constraints + [expr < min_val]) status = solver.check() if status != unsat: print( f'Z3 bug\nFind min ({expr}) => {min_val} with status ({status}):\n' + '\n'.join(constraint_strs)) return None return min_val
def get_state(doubles, browser): if browser == "node": browser = "chrome" elif browser not in ("chrome", "firefox", "safari"): raise ValueError(f"invalid browser {browser}") if browser == "chrome": doubles = doubles[::-1] # from the doubles, generate known piece of the original uint64 generated = [from_double(double, browser) for double in doubles] # setup symbolic state for xorshift128+ ostate0, ostate1 = BitVecs("ostate0 ostate1", 64) sym_state0 = ostate0 sym_state1 = ostate1 solver = Solver() conditions = [] # run symbolic xorshift128+ algorithm for three iterations # using the recovered numbers as constraints for val in generated: sym_state0, sym_state1, ret_conditions = sym_xs128p( solver, sym_state0, sym_state1, val, browser) conditions += ret_conditions if solver.check(conditions) == sat: # get a solved state m = solver.model() state0 = m[ostate0].as_long() state1 = m[ostate1].as_long() solver.add(Or(ostate0 != m[ostate0], ostate1 != m[ostate1])) if solver.check(conditions) == sat: print("WARNING: multiple solutions found! use more doubles!") return state0, state1 else: raise ValueError("unsat model")
def _z3_bounded_model_count(solver: z3.Solver, variables: List[z3.ExprRef], u: int) -> Optional[int]: """ If the solver assertions have less than u models that are distinct for the given variables it returns the exact model count, otherwise it returns None. :param solver: :param variables: :param u: """ solver.push() for i in range(u): response = solver.check() if response == z3.unknown: solver.pop() raise RuntimeError("Solver responded with unknown") elif response == z3.unsat: solver.pop() return i # in the last iteration adding the constraint would be unnecessary, thus is skipped if i != u - 1: # add assertion that found model cannot be satisfying again m = solver.model() solver.add(z3.Or([x != m[x] for x in variables])) solver.pop() return None
def myprove(claim): s = Solver() s.set(timeout=1*1000) s.add(claim) rs = s.check() if rs == unsat: return True else: return False
def test_knaves_3(self): """ It can not be that a person has the role of a knave and tells the truth. """ f = knaves_tell_lies() s = Solver() s.add(f) s.add(And(R(C) == Knave, S(C) == True)) self.assertEqual(unsat,s.check(), "Your formula should say that being a knave implies not telling the truth for all persons.")
def init_solver(cols): s = Solver() for col in cols: cond = And(col >= 0, col < len(COLORS)) #possible values for each column s.add(cond) cond_unicity = Distinct(cols) #each column is different s.add(cond_unicity) return s
def test_knaves_2(self): """ The formula returned by `knaves_tell_lies` and a lying knave must be satisfiable. """ f = knaves_tell_lies() s = Solver() s.add(f) s.add(And(R(A) == Knave, S(A) == False)) self.assertEqual(sat,s.check(), "Your formula should say that being a knave implies not telling the truth for all persons.")
def get_z3_result(query, debug=False) -> bool: s = Solver() s.add(query) if s.check() == sat: if debug: print(s, s.model()) return True return False
def fm(a: Formula, b: Formula, env: Environment, solver: z3.Solver, timer: Timer) -> Tuple[z3.CheckSatResult, Optional[z3.ModelRef]]: solver.push() solver.add(toZ3(a, env)) solver.add(z3.Not(toZ3(b, env))) r = timer.solver_check(solver) m = solver.model() if r == z3.sat else None solver.pop() return (r, m)
def getInitSolver(var): s = Solver() if (var.min_max is not None): print "adding min_max for ", var min_value, max_value = var.min_max z3var = Z3VarTable.get(var) s.add(min_value <= z3var) s.add(z3var <= max_value) return s
def check_inductiveness(slv: Solver, inv2pinv: Dict[Clause, Clause]) -> bool: # assumes trans has already been added to solver slv.push() assert_clauses(slv, inv2pinv.keys()) slv.add(Not(And([c._expr for c in inv2pinv.values()]))) # it's inductive if check is unsat res = str(slv.check()) == "unsat" slv.pop() return res
def test_sort_duplicates(self): lst_to_sort = [10, 9, 8, 7, 6, 10, 9, 8, 7, 6, 1] sorted_variables, assertions = sort_bubble(lst_to_sort) s = Solver() s.add(assertions) result = s.check() solution = s.model() sorted_integers = [solution[v].as_long() for v in sorted_variables] self.assertEqual(result, sat) self.assertEqual(sorted_integers, [1, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10])
def are_z3_satisfiable(z3_constraints): """ Checks the satisfiability of Z3 constraints. :param z3_constraints: to be checked :return: if satisfiable """ s = Solver() for c in z3_constraints: s.add(c) return s.check() == sat
def freedom_search(language: Language, space, generate_rules_only=False, distinct=False, can_be_same=True): rules = set() names = language.all_card_names() all_vars = list(map(z3.Int, names)) print(names) print(all_vars) for cut1 in tqdm(space(1)): for cut2 in space(2, cut1): for cut3 in space(3, cut1, cut2): for sequence in permutations(range(4)): cuts = (cut1, cut2, cut3) rule = freedom_of_spelling(all_vars, cuts, sequence, language, can_be_same) rules.add(rule) if distinct: rules.add(Distinct(all_vars)) else: for position in range(0, 52): at_starting_point = [card == position for card in all_vars] rule = AtMost(*at_starting_point, 1) rules.add(rule) rules.add(rules_all_cards_on_deck(all_vars)) if generate_rules_only: return print(len(rules)) s = Solver() s.set('smt.arith.random_initial_value', True) # random_seed (unsigned int) random seed (default: 0) s.set('random_seed', random.randint(0, 2 ** 8)) # seed (unsigned int) random seed. (default: 0) s.set('seed', random.randint(0, 2 ** 8)) s.add(rules) r = s.check() if r == unsat: print("no solution") elif r == unknown: print("failed to solve") try: print(s.reason_unknown()) print(s.model()) except Z3Exception: return else: print(s.model())
class Model(type): """ Meta class which allows to agregate the solvers of parent class """ def __new__(cls, name, bases, dct): def _agregateSolver(self): self.s = Solver() for base in bases: s1 = base.resetSolver(self) self.s.add(s1.assertions()) dct["reset"] = _agregateSolver return type.__new__(cls, name, bases, dct)
def all_solutions_point2(solver: z3.Solver, fillet_center) -> typing.List[Point2]: solutions = [] x, y = fillet_center while solver.check() == z3.sat: m = solver.model() solution = Point2(solution_as_float(m[x]), solution_as_float(m[y])) solutions.append(solution) solver.add((x - solution.x)**2 + (y - solution.y)**2 > 10**(-PRECISION) * 100) return solutions
def test_sort_no_duplicates(self): lst_to_sort = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2] sorted_variables, assertions = sort_no_duplicates(lst_to_sort) s = Solver() s.add(assertions) result = s.check() solution = s.model() sorted_integers = [solution[v].as_long() for v in sorted_variables] self.assertEqual(result, sat) self.assertEqual(sorted_integers, [-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
def bound_sort_counts(solver: z3.Solver, bounds: Dict[str, int]) -> None: for sort, K in bounds.items(): S = sorts_to_z3[sort] bv = z3.Const("elem_{}".format(sort), S) solver.add( z3.ForAll( bv, z3.Or(*[ z3.Const("elem_{}_{}".format(sort, i), S) == bv for i in range(K) ])))
def z3_problem(constraints, solver: z3.Solver): for con in constraints: break n = con.n x = np.array([z3.Real('x_%s' % (i + 1)) for i in range(n)]) x = sympy.Matrix([z3.Real('x_%s' % (i + 1)) for i in range(n)]) for con in constraints: solver.add(con.z3_expression(x)) return x, solver
def testZ3Distinctness(): ''' This test is simply a playground to explore how z3 handles distinctness and equality checking. ''' s = Solver() x, y = Consts('x y', language.PointSort) s.add(Distinct(x)) s.add(Distinct(y)) print s # print s.add(Not(eq(x,y))) # print eq(simplify(x),simplify(y)) # s.add(eq(x,y)) s.add(Not(eq(x,y))) print s.check() print s
def PEPPolicy(PEP, model): disjunctions = [] for or_id in range(NUM_ORS): conjunctions = [] for enum_id in range(NUM_ENUMS): enumVar = TEMPLATE_ENUM_VARS[PEP][or_id][enum_id] if model[enumVar] is not None: synthVal = model[enumVar].as_long() else: synthVal = -1 if synthVal >= 0 and synthVal < len(ENUM_INDEX.keys()): if not isinstance(ENUM_INDEX[synthVal], list): boolVar = ENUM_INDEX[synthVal] conjunctions.append(boolVar) else: [enumVar, val] = ENUM_INDEX[synthVal] conjunctions.append(enumVar == val) elif synthVal >= len(ENUM_INDEX.keys()) and synthVal < 2 * len(ENUM_INDEX.keys()): if not isinstance(ENUM_INDEX[synthVal - len(ENUM_INDEX.keys())], list): boolVar = ENUM_INDEX[synthVal - len(ENUM_INDEX.keys())] conjunctions.append(Not(boolVar)) else: [enumVar, val] = ENUM_INDEX[synthVal - len(ENUM_INDEX.keys())] conjunctions.append(enumVar != val) elif synthVal == 2 * len(ENUM_INDEX.keys()): conjunctions.append(True) else: conjunctions.append(False) for num_id in range(NUM_NUMERIC): minVar = TEMPLATE_NUMERIC_VARS[PEP][or_id][num_id]['min'] maxVar = TEMPLATE_NUMERIC_VARS[PEP][or_id][num_id]['max'] if model[minVar] is not None and model[maxVar] is not None: crosscheck = Solver() crosscheck.add(model[minVar] <= model[maxVar]) if crosscheck.check() == sat: conjunctions.append(NUM_VAR >= model[minVar].as_long()) conjunctions.append(NUM_VAR <= model[maxVar].as_long()) elif model[minVar] is not None: conjunctions.append(NUM_VAR >= model[minVar].as_long()) elif model[maxVar] is not None: conjunctions.append(NUM_VAR <= model[maxVar].as_long()) disjunctions.append(simplify(And(conjunctions))) return simplify(Or(disjunctions))
class MySolver(object): def __init__(self): self._solver = Solver() # TODO: Initialize datatypes here # TODO: Port the below functions to here as methods def push(self): """Push solver state.""" self._solver.push() def pop(self): """Pop solver state.""" self._solver.pop() def add(self, assertion): """Add an assertion to the solver state. Arguments: assertion : Z3-friendly predicate or boolean """ return self._solver.add(assertion) def model(self): """Return a model for the current solver state. Returns: : Z3 model. TODO: Modify this all so that it returns sets, etc. """ return self._solver.model() def check(self): """Check satisfiability of current satisfiability state. Returns: : boolean -- True if sat, False if unsat """ # check() returns either unsat or sat # sat.r is 1, unsat.r is -1 return self._solver.check().r > 0 @contextmanager def context(self): """To do something in between a push and a pop, use a `with context()`.""" self.push() yield self.pop() def quick_check(self, assertion): """Add an assertion only temporarily, and check sat.""" with self.context(): self.add(assertion) return self.check()
def is_tautology(formula) : """Check whether the formula is a tautology, and give a counterexample if it is not. Parameters ---------- formula@Formula - The formula to be tested. Returns ---------- check_res@bool - Whether the formula is a tautology. counterexample@Model - None if the formula is a tautology, otherwise a counterexample. """ s = Solver() s.add(Not(formula)) if s.check() == unsat : return True, None return False, s.model()
def collide(target_str, base_str, count = 10, size_suffix = 6, prefix = False): '''Generates a string with the following properties: * strcmp(res, base_str) = 0 * H(res) == H(target_str)''' solver = Solver() if prefix: res = generate_ascii_printable_string('res', size_suffix, solver) + str_to_BitVecVals8(base_str) else: res = str_to_BitVecVals8(base_str) + generate_ascii_printable_string('res', size_suffix, solver) target_checksum = H(str_to_BitVecVals8(target_str)) res_checksum = H(res) solver.add(res_checksum == target_checksum) for i in range(count): if solver.check() == sat: model = solver.model() if prefix: solution = "".join(chr(model[x].as_long()) for x in res[:size_suffix]) + base_str solver.add([x != model[x].as_long() for x in res[:size_suffix]]) else: solution = base_str + "".join(chr(model[x].as_long()) for x in res[-size_suffix:]) solver.add([x != model[x].as_long() for x in res[-size_suffix:]]) yield solution
def get_models(F): result = [] s = Solver() s.add(F) while True: if s.check() == sat: m = s.model() result.append(m) # Create a new constraint the blocks the current model block = [] for d in m: # d is a declaration if d.arity() > 0: raise Z3Exception( "uninterpreted functions are not suppported") # create a constant from declaration c = d() if is_array(c) or c.sort().kind() == Z3_UNINTERPRETED_SORT: raise Z3Exception( "arrays and uninterpreted sorts are not supported") block.append(c != m[d]) s.add(Or(block)) else: return result
def remove_derived_clauses(self): clauses = sorted(self, key=lambda x: (len(x), x.rank, id(x))) solver = Solver() for c in clauses: if c.must_keep: solver.add(c.z3_expr) continue solver.push() solver.add(*[(~l).z3_expr for l in c]) if solver.check() != unsat: solver.pop() solver.add(c.z3_expr) else: solver.pop() self.clauses.remove(c)
def is_equivalent(self, state): solver = Solver() b1, b2 = FreshBool(), FreshBool() solver.add(b1 == self.z3_expr) solver.add(b2 == state.z3_expr) solver.add(Not(And(Implies(b1, b2), Implies(b2, b1)))) # print "comparing" # print self # print "-------" # print state # if solver.check() != unsat: # m = solver.model() # print m # raw_input("press any key to continue") # return False # return True return solver.check() == unsat
def __call__(self, project, test, dump): logger.info('inferring specification for test \'{}\''.format(test)) environment = dict(os.environ) if self.config['klee_max_forks'] is not None: environment['ANGELIX_KLEE_MAX_FORKS'] = str(self.config['klee_max_forks']) if self.config['klee_max_depth'] is not None: environment['ANGELIX_KLEE_MAX_DEPTH'] = str(self.config['klee_max_depth']) if self.config['klee_search'] is not None: environment['ANGELIX_KLEE_SEARCH'] = self.config['klee_search'] if self.config['klee_timeout'] is not None: environment['ANGELIX_KLEE_MAX_TIME'] = str(self.config['klee_timeout']) if self.config['klee_solver_timeout'] is not None: environment['ANGELIX_KLEE_MAX_SOLVER_TIME'] = str(self.config['klee_solver_timeout']) if self.config['klee_debug']: environment['ANGELIX_KLEE_DEBUG'] = 'YES' if self.config['klee_ignore_errors']: environment['KLEE_DISABLE_MEMORY_ERROR'] = 'YES' if self.config['use_semfix_syn']: environment['ANGELIX_USE_SEMFIX_SYN'] = 'YES' environment['ANGELIX_KLEE_WORKDIR'] = project.dir test_dir = self.get_test_dir(test) shutil.rmtree(test_dir, ignore_errors='true') klee_dir = join(test_dir, 'klee') os.makedirs(klee_dir) self.run_test(project, test, klee=True, env=environment) # loading dump # name -> value list oracle = dict() vars = os.listdir(dump) for var in vars: instances = os.listdir(join(dump, var)) for i in range(0, len(instances)): if str(i) not in instances: logger.error('corrupted dump for test \'{}\''.format(test)) raise InferenceError() oracle[var] = [] for i in range(0, len(instances)): file = join(dump, var, str(i)) with open(file) as f: content = f.read() oracle[var].append(content) # solving path constraints angelic_paths = [] solver = Solver() smt_glob = join(project.dir, 'klee-out-0', '*.smt2') smt_files = glob(smt_glob) for smt in smt_files: logger.info('solving path {}'.format(relpath(smt))) try: path = z3.parse_smt2_file(smt) except: logger.warning('failed to parse {}'.format(smt)) continue variables = [str(var) for var in get_vars(path) if str(var).startswith('int!') or str(var).startswith('bool!') or str(var).startswith('char!') or str(var).startswith('reachable!')] outputs, choices, constants, reachable, original_available = parse_variables(variables) # name -> value list (parsed) oracle_constraints = dict() def str_to_int(s): return int(s) def str_to_bool(s): if s == 'false': return False if s == 'true': return True raise InferenceError() def str_to_char(s): if len(s) != 1: raise InferenceError() return s[0] dump_parser_by_type = dict() dump_parser_by_type['int'] = str_to_int dump_parser_by_type['bool'] = str_to_bool dump_parser_by_type['char'] = str_to_char def bool_to_bv32(b): if b: return BitVecVal(1, 32) else: return BitVecVal(0, 32) def int_to_bv32(i): return BitVecVal(i, 32) to_bv32_converter_by_type = dict() to_bv32_converter_by_type['bool'] = bool_to_bv32 to_bv32_converter_by_type['int'] = int_to_bv32 def bv32_to_bool(bv): return bv.as_long() != 0 def bv32_to_int(bv): l = bv.as_long() if l >> 31 == 1: # negative l -= 4294967296 return l from_bv32_converter_by_type = dict() from_bv32_converter_by_type['bool'] = bv32_to_bool from_bv32_converter_by_type['int'] = bv32_to_int matching_path = True for expected_variable, expected_values in oracle.items(): if expected_variable == 'reachable': expected_reachable = set(expected_values) if not (expected_reachable == reachable): logger.info('labels \'{}\' executed while {} required'.format( list(reachable), list(expected_reachable))) matching_path = False break continue if expected_variable not in outputs.keys(): outputs[expected_variable] = (None, 0) # unconstraint does not mean wrong required_executions = len(expected_values) actual_executions = outputs[expected_variable][1] if required_executions != actual_executions: logger.info('value \'{}\' executed {} times while {} required'.format( expected_variable, actual_executions, required_executions)) matching_path = False break oracle_constraints[expected_variable] = [] for i in range(0, required_executions): type = outputs[expected_variable][0] try: value = dump_parser_by_type[type](expected_values[i]) except: logger.error('variable \'{}\' has incompatible type {}'.format(expected_variable, type)) raise InferenceError() oracle_constraints[expected_variable].append(value) if not matching_path: continue solver.reset() solver.add(path) def array_to_bv32(array): return Concat(Select(array, BitVecVal(3, 32)), Select(array, BitVecVal(2, 32)), Select(array, BitVecVal(1, 32)), Select(array, BitVecVal(0, 32))) def angelic_selector(expr, instance): s = 'angelic!{}!{}!{}!{}!{}'.format(expr[0], expr[1], expr[2], expr[3], instance) return BitVec(s, 32) def original_selector(expr, instance): s = 'original!{}!{}!{}!{}!{}'.format(expr[0], expr[1], expr[2], expr[3], instance) return BitVec(s, 32) def env_selector(expr, instance, name): s = 'env!{}!{}!{}!{}!{}!{}'.format(name, expr[0], expr[1], expr[2], expr[3], instance) return BitVec(s, 32) for name, values in oracle_constraints.items(): type, _ = outputs[name] for i, value in enumerate(values): array = self.output_variable(type, name, i) bv_value = to_bv32_converter_by_type[type](value) solver.add(bv_value == array_to_bv32(array)) for (expr, item) in choices.items(): type, instances, env = item for instance in range(0, instances): selector = angelic_selector(expr, instance) array = self.angelic_variable(type, expr, instance) solver.add(selector == array_to_bv32(array)) selector = original_selector(expr, instance) array = self.original_variable(type, expr, instance) solver.add(selector == array_to_bv32(array)) for name in env: selector = env_selector(expr, instance, name) env_type = 'int' #FIXME array = self.env_variable(env_type, expr, instance, name) solver.add(selector == array_to_bv32(array)) result = solver.check() if result != z3.sat: logger.info('UNSAT') continue model = solver.model() # store smt2 files shutil.copy(smt, klee_dir) # generate IO file self.generate_IO_file(test, choices, oracle_constraints, outputs) # expr -> (angelic * original * env) list angelic_path = dict() for (expr, item) in choices.items(): angelic_path[expr] = [] type, instances, env = item for instance in range(0, instances): bv_angelic = model[angelic_selector(expr, instance)] angelic = from_bv32_converter_by_type[type](bv_angelic) bv_original = model[original_selector(expr, instance)] original = from_bv32_converter_by_type[type](bv_original) if original_available: logger.info('expression {}[{}]: angelic = {}, original = {}'.format(expr, instance, angelic, original)) else: logger.info('expression {}[{}]: angelic = {}'.format(expr, instance, angelic)) env_values = dict() for name in env: bv_env = model[env_selector(expr, instance, name)] value = from_bv32_converter_by_type['int'](bv_env) env_values[name] = value if original_available: angelic_path[expr].append((angelic, original, env_values)) else: angelic_path[expr].append((angelic, None, env_values)) # TODO: add constants to angelic path angelic_paths.append(angelic_path) # update IO files for smt in glob(join(klee_dir, '*.smt2')): with open(smt) as f_smt: for line in f_smt.readlines(): if re.search("declare-fun [a-z]+!output!", line): output_var = line.split(' ')[1] output_var_type = output_var.split('!')[0] for io_file in glob(join(test_dir, '*.IO')): if not output_var in open(io_file).read(): with open(io_file, "a") as f_io: f_io.write("\n") f_io.write("@output\n") f_io.write('name {}\n'.format(output_var)) f_io.write('type {}\n'.format(output_var_type)) if self.config['max_angelic_paths'] is not None and \ len(angelic_paths) > self.config['max_angelic_paths']: angelic_paths = self._reduce_angelic_forest(angelic_paths) else: logger.info('found {} angelic paths for test \'{}\''.format(len(angelic_paths), test)) return angelic_paths
from z3 import Solver, BitVec s = Solver() x = BitVec('x', 32) s.add(x > 1337) s.add(x*7 + 4 == 1337) s.check() print s.model()
def __call__(self, project, test, dump, validation_project): logger.info('inferring specification for test \'{}\''.format(test)) environment = dict(os.environ) if self.config['klee_max_forks'] is not None: environment['ANGELIX_KLEE_MAX_FORKS'] = str(self.config['klee_max_forks']) if self.config['klee_max_depth'] is not None: environment['ANGELIX_KLEE_MAX_DEPTH'] = str(self.config['klee_max_depth']) if self.config['klee_search'] is not None: environment['ANGELIX_KLEE_SEARCH'] = self.config['klee_search'] if self.config['klee_timeout'] is not None: environment['ANGELIX_KLEE_MAX_TIME'] = str(self.config['klee_timeout']) if self.config['klee_solver_timeout'] is not None: environment['ANGELIX_KLEE_MAX_SOLVER_TIME'] = str(self.config['klee_solver_timeout']) if self.config['klee_debug']: environment['ANGELIX_KLEE_DEBUG'] = 'YES' if self.config['klee_ignore_errors']: environment['KLEE_DISABLE_MEMORY_ERROR'] = 'YES' if self.config['use_semfix_syn']: environment['ANGELIX_USE_SEMFIX_SYN'] = 'YES' environment['ANGELIX_KLEE_WORKDIR'] = project.dir klee_start_time = time.time() self.run_test(project, test, klee=True, env=environment) klee_end_time = time.time() klee_elapsed = klee_end_time - klee_start_time statistics.data['time']['klee'] += klee_elapsed statistics.save() logger.info('sleeping for 1 second...') time.sleep(1) smt_glob = join(project.dir, 'klee-out-0', '*.smt2') smt_files = glob(smt_glob) err_glob = join(project.dir, 'klee-out-0', '*.err') err_files = glob(err_glob) err_list = [] for err in err_files: err_list.append(os.path.basename(err).split('.')[0]) non_error_smt_files = [] for smt in smt_files: smt_id = os.path.basename(smt).split('.')[0] if not smt_id in err_list: non_error_smt_files.append(smt) if not self.config['ignore_infer_errors']: smt_files = non_error_smt_files if len(smt_files) == 0 and len(err_list) == 0: logger.warning('No paths explored') raise NoSmtError() if len(smt_files) == 0: logger.warning('No non-error paths explored') raise NoSmtError() # loading dump # name -> value list oracle = dict() vars = os.listdir(dump) for var in vars: instances = os.listdir(join(dump, var)) for i in range(0, len(instances)): if str(i) not in instances: logger.error('corrupted dump for test \'{}\''.format(test)) raise InferenceError() oracle[var] = [] for i in range(0, len(instances)): file = join(dump, var, str(i)) with open(file) as f: content = f.read() oracle[var].append(content) # solving path constraints inference_start_time = time.time() angelic_paths = [] z3.set_param("timeout", self.config['path_solving_timeout']) solver = Solver() for smt in smt_files: logger.info('solving path {}'.format(relpath(smt))) try: path = z3.parse_smt2_file(smt) except: logger.warning('failed to parse {}'.format(smt)) continue variables = [str(var) for var in get_vars(path) if str(var).startswith('int!') or str(var).startswith('long!') or str(var).startswith('bool!') or str(var).startswith('char!') or str(var).startswith('reachable!')] try: outputs, choices, constants, reachable, original_available = parse_variables(variables) except: continue # name -> value list (parsed) oracle_constraints = dict() def str_to_int(s): return int(s) def str_to_long(s): return int(s) def str_to_bool(s): if s == 'false': return False if s == 'true': return True raise InferenceError() def str_to_char(s): if len(s) != 1: raise InferenceError() return s[0] dump_parser_by_type = dict() dump_parser_by_type['int'] = str_to_int dump_parser_by_type['long'] = str_to_long dump_parser_by_type['bool'] = str_to_bool dump_parser_by_type['char'] = str_to_char def bool_to_bv(b): if b: return BitVecVal(1, 32) else: return BitVecVal(0, 32) def int_to_bv(i): return BitVecVal(i, 32) def long_to_bv(i): return BitVecVal(i, 64) def char_to_bv(c): return BitVecVal(ord(c), 32) to_bv_converter_by_type = dict() to_bv_converter_by_type['bool'] = bool_to_bv to_bv_converter_by_type['int'] = int_to_bv to_bv_converter_by_type['long'] = long_to_bv to_bv_converter_by_type['char'] = char_to_bv def bv_to_bool(bv): return bv.as_long() != 0 def bv_to_int(bv): l = bv.as_long() if l >> 31 == 1: # negative l -= pow(2, 32) return l def bv_to_long(bv): l = bv.as_long() if l >> 63 == 1: # negative l -= pow(2, 64) return l def bv_to_char(bv): l = bv.as_long() return chr(l) from_bv_converter_by_type = dict() from_bv_converter_by_type['bool'] = bv_to_bool from_bv_converter_by_type['int'] = bv_to_int from_bv_converter_by_type['long'] = bv_to_long from_bv_converter_by_type['char'] = bv_to_char matching_path = True for expected_variable, expected_values in oracle.items(): if expected_variable == 'reachable': expected_reachable = set(expected_values) if not (expected_reachable == reachable): logger.info('labels \'{}\' executed while {} required'.format( list(reachable), list(expected_reachable))) matching_path = False break continue if expected_variable not in outputs.keys(): outputs[expected_variable] = (None, 0) # unconstraint does not mean wrong required_executions = len(expected_values) actual_executions = outputs[expected_variable][1] if required_executions != actual_executions: logger.info('value \'{}\' executed {} times while {} required'.format( expected_variable, actual_executions, required_executions)) matching_path = False break oracle_constraints[expected_variable] = [] for i in range(0, required_executions): type = outputs[expected_variable][0] try: value = dump_parser_by_type[type](expected_values[i]) except: logger.error('variable \'{}\' has incompatible type {}'.format(expected_variable, type)) raise InferenceError() oracle_constraints[expected_variable].append(value) if not matching_path: continue solver.reset() solver.add(path) def array_to_bv32(array): return Concat(Select(array, BitVecVal(3, 32)), Select(array, BitVecVal(2, 32)), Select(array, BitVecVal(1, 32)), Select(array, BitVecVal(0, 32))) def array_to_bv64(array): return Concat(Select(array, BitVecVal(7, 32)), Select(array, BitVecVal(6, 32)), Select(array, BitVecVal(5, 32)), Select(array, BitVecVal(4, 32)), Select(array, BitVecVal(3, 32)), Select(array, BitVecVal(2, 32)), Select(array, BitVecVal(1, 32)), Select(array, BitVecVal(0, 32))) def angelic_variable(type, expr, instance): pattern = '{}!choice!{}!{}!{}!{}!{}!angelic' s = pattern.format(type, expr[0], expr[1], expr[2], expr[3], instance) return Array(s, BitVecSort(32), BitVecSort(8)) def original_variable(type, expr, instance): pattern = '{}!choice!{}!{}!{}!{}!{}!original' s = pattern.format(type, expr[0], expr[1], expr[2], expr[3], instance) return Array(s, BitVecSort(32), BitVecSort(8)) def env_variable(expr, instance, name): pattern = 'int!choice!{}!{}!{}!{}!{}!env!{}' s = pattern.format(expr[0], expr[1], expr[2], expr[3], instance, name) return Array(s, BitVecSort(32), BitVecSort(8)) def output_variable(type, name, instance): s = '{}!output!{}!{}'.format(type, name, instance) if type == 'long': return Array(s, BitVecSort(32), BitVecSort(8)) else: return Array(s, BitVecSort(32), BitVecSort(8)) def angelic_selector(expr, instance): s = 'angelic!{}!{}!{}!{}!{}'.format(expr[0], expr[1], expr[2], expr[3], instance) return BitVec(s, 32) def original_selector(expr, instance): s = 'original!{}!{}!{}!{}!{}'.format(expr[0], expr[1], expr[2], expr[3], instance) return BitVec(s, 32) def env_selector(expr, instance, name): s = 'env!{}!{}!{}!{}!{}!{}'.format(name, expr[0], expr[1], expr[2], expr[3], instance) return BitVec(s, 32) for name, values in oracle_constraints.items(): type, _ = outputs[name] for i, value in enumerate(values): array = output_variable(type, name, i) bv_value = to_bv_converter_by_type[type](value) if type == 'long': solver.add(bv_value == array_to_bv64(array)) else: solver.add(bv_value == array_to_bv32(array)) for (expr, item) in choices.items(): type, instances, env = item for instance in range(0, instances): selector = angelic_selector(expr, instance) array = angelic_variable(type, expr, instance) solver.add(selector == array_to_bv32(array)) selector = original_selector(expr, instance) array = original_variable(type, expr, instance) solver.add(selector == array_to_bv32(array)) for name in env: selector = env_selector(expr, instance, name) array = env_variable(expr, instance, name) solver.add(selector == array_to_bv32(array)) result = solver.check() if result != z3.sat: logger.info('UNSAT') # TODO: can be timeout continue model = solver.model() # expr -> (angelic * original * env) list angelic_path = dict() if os.path.exists(self.load[test]): shutil.rmtree(self.load[test]) os.mkdir(self.load[test]) for (expr, item) in choices.items(): angelic_path[expr] = [] type, instances, env = item expr_str = '{}-{}-{}-{}'.format(expr[0], expr[1], expr[2], expr[3]) expression_dir = join(self.load[test], expr_str) if not os.path.exists(expression_dir): os.mkdir(expression_dir) for instance in range(0, instances): bv_angelic = model[angelic_selector(expr, instance)] angelic = from_bv_converter_by_type[type](bv_angelic) bv_original = model[original_selector(expr, instance)] original = from_bv_converter_by_type[type](bv_original) if original_available: logger.info('expression {}[{}]: angelic = {}, original = {}'.format(expr, instance, angelic, original)) else: logger.info('expression {}[{}]: angelic = {}'.format(expr, instance, angelic)) env_values = dict() for name in env: bv_env = model[env_selector(expr, instance, name)] value = from_bv_converter_by_type['int'](bv_env) env_values[name] = value if original_available: angelic_path[expr].append((angelic, original, env_values)) else: angelic_path[expr].append((angelic, None, env_values)) # Dump angelic path to dump folder instance_file = join(expression_dir, str(instance)) with open(instance_file, 'w') as file: if isinstance(angelic, bool): if angelic: file.write('1') else: file.write('0') else: file.write(str(angelic)) # Run Tester to validate the dumped values validated = self.run_test(validation_project, test, load=self.load[test]) if validated: angelic_paths.append(angelic_path) else: logger.info('spurious angelic path') if self.config['synthesis_bool_only']: angelic_paths = self._boolean_angelic_forest(angelic_paths) if self.config['max_angelic_paths'] is not None and \ len(angelic_paths) > self.config['max_angelic_paths']: angelic_paths = self._reduce_angelic_forest(angelic_paths) else: logger.info('found {} angelic paths for test \'{}\''.format(len(angelic_paths), test)) inference_end_time = time.time() inference_elapsed = inference_end_time - inference_start_time statistics.data['time']['inference'] += inference_elapsed iter_stat = dict() iter_stat['time'] = dict() iter_stat['time']['klee'] = klee_elapsed iter_stat['time']['inference'] = inference_elapsed iter_stat['paths'] = dict() iter_stat['paths']['explored'] = len(smt_files) iter_stat['paths']['angelic'] = len(angelic_paths) statistics.data['iterations']['klee'].append(iter_stat) statistics.save() return angelic_paths
e = ExprId('e', 1) left = ExprCond(e + ExprOp('parity', a), ExprMem(a * a, 64), ExprMem(a, 64)) cond = ExprSlice(ExprSlice(ExprSlice(a, 0, 32) + b, 0, 16) * c, 0, 8) << ExprOp('>>>', d, ExprInt(uint8(0x5L))) right = ExprCond(cond, a + ExprInt(uint64(0x64L)), ExprInt(uint64(0x16L))) e = ExprAff(left, right) # initialise translators t_z3 = TranslatorZ3() t_smt2 = TranslatorSMT2() # translate to z3 e_z3 = t_z3.from_expr(e) # translate to smt2 smt2 = t_smt2.to_smt2([t_smt2.from_expr(e)]) # parse smt2 string with z3 smt2_z3 = parse_smt2_string(smt2) # initialise SMT solver s = Solver() # prove equivalence of z3 and smt2 translation s.add(e_z3 != smt2_z3) assert (s.check() == unsat)
def exploit(t): target = lambda: remote(t['hostname'], t['port'], timeout=3) try: with target() as s: n_inputs = int(s.recvline().strip()) for _ in range(n_inputs): inp = s.recvline().strip() c1, c2, c3 = solve_for(inp) s.sendline('{} {} {}'.format(c1, c2, c3)) s.recvuntil("want?:") s.send("2\n3\n19\n"+t['flag_id']+"\n16\n"+"A"*16+"\n0\n") s.recvuntil("GameTime:") v19_c, v20_c, x_c, v22_c, v23_c, y_c = map(int, s.recv().split(', ')) solv = Solver() v18 = Int('v18') v21 = Int('v21') v19 = Int('v19') solv.add(v19 == v19_c) v20 = Int('v20') solv.add(v20 == v20_c) v22 = Int('v22') solv.add(v22 == v22_c) v23 = Int('v23') solv.add(v23 == v23_c) x = Int('x') solv.add(x == x_c) solv.add(x == v19*v18 + v20*v21) y = Int('y') solv.add(y == y_c) solv.add(y == v22*v18 + v21*v23) solv.check() solv.model() s.sendline(str(solv.model()[v18].as_long())) s.sendline(str(solv.model()[v21].as_long())) s.recvuntil("log:") s.send("15\n:83xkHFchNObsWf\n") s.recvuntil("):") s.sendline("478175") s.recvuntil("Name:") magic = s.recvuntil(":")[:-1] with target() as s: n_inputs = int(s.recvline().strip()) for _ in range(n_inputs): inp = s.recvline().strip() c1, c2, c3 = solve_for(inp) s.sendline('{} {} {}'.format(c1, c2, c3)) s.recvuntil("want?:") s.send("2\n5\n19\n"+t['flag_id']+"\n16\n"+magic+"\n") s.recvline() flag = s.recvline().strip() return flag except: return
class ACL22SMT(object): class status: def __init__(self, value): self.value = value def __str__(self): if self.value is True: return "QED" elif self.value.__class__ == "msg".__class__: return self.value else: raise Exception("unknown status?") def isThm(self): return self.value is True class atom: # added my mrg, 21 May 2015 def __init__(self, string): self.who_am_i = string.lower() def __eq__(self, other): return self.who_am_i == other.who_am_i def __ne__(self, other): return self.who_am_i != other.who_am_i def __str__(self): return self.who_am_i def __init__(self, solver=0): if solver != 0: self.solver = solver else: self.solver = Solver() self.nameNumber = 0 def newVar(self): varName = "$" + str(self.nameNumber) self.nameNumber = self.nameNumber + 1 return varName def isBool(self, who): return Bool(who) def isInt(self, who): return Int(who) def isReal(self, who): return Real(who) def plus(self, *args): return reduce(lambda x, y: x + y, args) def times(self, *args): return reduce(lambda x, y: x * y, args) def reciprocal(self, x): if type(x) is int: return Q(1, x) elif type(x) is float: return 1.0 / x else: return 1.0 / x def negate(self, x): return -x def lt(self, x, y): return x < y def equal(self, x, y): return x == y def notx(self, x): return Not(x) def implies(self, x, y): return Implies(x, y) def Qx(self, x, y): return Q(x, y) # type related functions def integerp(self, x): return sort(x) == IntSort() def rationalp(self, x): return sort(x) == RealSort() def booleanp(self, x): return sort(x) == BoolSort() def ifx(self, condx, thenx, elsex): return If(condx, thenx, elsex) # usage prove(claim) or prove(hypotheses, conclusion) def prove(self, hypotheses, conclusion=0): if conclusion is 0: claim = hypotheses else: claim = Implies(hypotheses, conclusion) self.solver.push() self.solver.add(Not(claim)) res = self.solver.check() if res == unsat: print "proved" return self.status(True) # It's a theorem elif res == sat: print "counterexample" m = self.solver.model() print m # return an counterexample?? return self.status(False) else: print "failed to prove" r = self.status(False) self.solver.pop() return r
q1x = p0[0]+t1*(p1[0]-p0[0]) q1y = p0[1]+t1*(p1[1]-p0[1]) q2x = p1[0]+t2*(p2[0]-p1[0]) q2y = p1[1]+t2*(p2[1]-p1[1]) q3x = p2[0]+t3*(p3[0]-p2[0]) q3y = p2[1]+t3*(p3[1]-p2[1]) q4x = p3[0]+t4*(p4[0]-p3[0]) q4y = p3[1]+t4*(p4[1]-p3[1]) solver = Solver() solver.add(t1 >= 0, t2 >= 0, t3 >= 0, t4 >= 0) solver.add(t1 <= 1, t2 <= 1, t3 <= 1, t4 <= 1) def orthogonal(px, py, qx, qy, rx, ry): return (px-qx)*(rx-qx)+(py-qy)*(ry-qy) == 0 solver.add(orthogonal(q1x, q1y, q2x, q2y, q3x, q3y)) solver.add(orthogonal(q2x, q2y, q3x, q4y, q4x, q4y)) solver.add(orthogonal(q3x, q3y, q4x, q4y, q1x, q1y)) solver.add(orthogonal(q4x, q4y, q1x, q1y, q2x, q2y)) solver.add((q2x-q1x)**2+(q2y-q1y)**2 == (q4x-q3x)**2+(q4y-q3y)**2) solver.add((q3x-q2x)**2+(q3y-q2y)**2 == (q4x-q1x)**2+(q4y-q1y)**2) solver.add()
def check(self, smt2_formula, context=None): s = Solver() s.add(parse_smt2_string((context if context else self.context) + smt2_formula)) return str(s.check())
def test1(): print "=== Loading Core ===" solver = Solver() solver.push() solver.add(language.axioms) print "=== Starting tests ===" print ">> Let p q r s t u v be distinct points" p, q, r, s, t, u, v = Consts('p q r s t u v', language.PointSort) solver.add(simplify(Distinct(p,q,r,s,t,u,v), blast_distinct=True)) print ">> Let L M N O be distinct lines" K, L, M, N, O = Consts('K L M N O', language.LineSort) solver.add(simplify(Distinct(K,L,M,N,O), blast_distinct=True)) ## Diagram description assumptions = [] assumptions.append(language.OnLine(p,L)) assumptions.append(language.OnLine(q,L)) assumptions.append(language.OnLine(p,N)) assumptions.append(language.OnLine(s,N)) assumptions.append(language.OnLine(t,N)) assumptions.append(language.OnLine(p,M)) assumptions.append(language.OnLine(r,M)) assumptions.append(language.OnLine(q,O)) assumptions.append(language.OnLine(s,O)) assumptions.append(language.OnLine(r,O)) assumptions.append(language.OnLine(q,K)) assumptions.append(language.OnLine(t,K)) assumptions.append(Not(language.OnLine(r,L))) assumptions.append(language.Between(p,s,t)) assumptions.append(language.Between(q,s,r)) assumptions.append(language.Between(s,u,t)) assumptions.append(Not(p == q)) assumptions.append(language.Between(p,q,v)) print ">> Assume " + str(assumptions) solver.add(assumptions) print " << z3: " + str(solver.check()) ## Satisfied solver.push() solver.add(True) print ">> Hence True" print " << z3: " + str(solver.check()) solver.pop() ## Satisfied solver.push() solver.add(Not(language.SameSide(s,t,O))) print ">> Hence s and t are on opposite sides of O" print " << z3: " + str(solver.check()) solver.pop() ## Satisfied solver.push() solver.add(language.SameSide(u,t,M)) print ">> Hence u and t are on same side of M" print " << z3: " + str(solver.check()) solver.pop() ## unsatisfied solver.push() solver.add(language.SameSide(p,t,O)) print ">> Hence p and t are on same side of O" print " << z3: " + str(solver.check()) solver.pop() ## unsatisfied solver.push() solver.add(language.SameSide(s,t,O)) print ">> Hence s and t are on same side of O" print " << z3: " + str(solver.check()) solver.pop() ## unsatisfied solver.push() solver.add(Not(language.SameSide(s,t,M))) print ">> Hence s and t are on opposite sides of M" print " << z3: " + str(solver.check()) solver.pop() ## unsatisfied solver.push() solver.add(Not(language.SameSide(u,t,M))) print ">> Hence u and t are on opposite sides of M" print " << z3: " + str(solver.check()) solver.pop() ## unsatisfied solver.push() solver.add(language.Between(s,p,t)) print ">> Hence p is between s and t" print " << z3: " + str(solver.check()) solver.pop() ## unsatisfied solver.push() solver.add(M == N) print ">> Hence p is between s and t" print " << z3: " + str(solver.check()) solver.pop() ## unsatisfied solver.push() solver.add(language.Between(q,s,u)) print ">> Hence s is between q and u" print " << z3: " + str(solver.check()) solver.pop() ## unsatisfied solver.push() solver.add(Not( language.Segment(s,u) < language.Segment(s,t))) print ">> Hence seg su is less than seg st" print " << z3: " + str(solver.check()) solver.pop() ## unsatisfied solver.push() solver.add(L==K) print ">> Hence L = K" print " << z3: " + str(solver.check()) solver.pop()
from z3 import Real, Solver s = Solver() x = Real('x') s.add((x * 3.0 + 18.0) == (x * 12.56637061435917)) print s.check() print s.model() print s.model()[x].as_decimal(10)
from z3 import Solver, BitVec, sat s = Solver() q = [BitVec("q_%s" % (i),16) for i in range(17)] s.add([q[x] >= 33 for x in range(17)]) s.add([q[x] <= 125 for x in range(17)]) s.add(q[16] ^ 128 == 253) s.add(q[0] & q[16] == 121) s.add((q[0] + 2) % 5 == 0) s.add(q[11] == 95) s.add((q[5] >> (q[16] - q[0])) == 16) s.add((q[5] << (q[16] - q[0])) == 260) s.add(q[13] ^ q[11] == 110) s.add((q[13] * 1.0 / q[10]) == 7/11.0) # Floating points :( s.add(((q[13] & q[11]) * 4) + 1 == q[6]) s.add(q[5] & q[13] <= 17) s.add(q[1] - 9 == q[9]) s.add((q[7] & q[9]) == q[11] + (q[5] & q[13])) s.add(q[7] % 57 == 0) s.add((q[9] + q[11]) / 2 == q[12]) s.add(q[7] ^ q[3] == q[11]) s.add(q[3] ^ q[8] == 0) s.add(q[15] & q[3] == q[9] & q[8]) s.add(q[15] >> 3 == 6) s.add(q[15] % 5 == 3) s.add(q[4] ^ q[7] == q[5] - q[8]) s.add(q[2] & q[8] == 32) s.add(q[2] << 2 == q[0] + q[6]) s.add(q[14] % 29 == 0)
def main(): cppfile = 'Vtop_b12.cpp' hfile = 'Vtop_b12.h' CoveragesToTest = range(104 + 1) cppstring=[] hstring=[] check = check_mod() check.readfi(cppfile, cppstring) check.readfi(hfile, hstring) seqfunc=[] check.get_seqfunc(cppstring, seqfunc) AllSigList = check.get_all_sig_names(hstring, seqfunc) parser = CParser() generator = c_generator.CGenerator() # cov_no = 1 for cov_no in CoveragesToTest: #cov_no = 3 #Making global instance of CParser and CCgenerator #as their they take a long time to run. So, just making it once print("\n\nCoverage No. to test : {}".format(cov_no)) trueCond, falseCond = check.getAllCondsForCovNo(seqfunc, cov_no) # Most probably this full search can be simplified to getting first false or true condition after detecting it CondType, CondNo = check.CondAboveCovNo(seqfunc, cov_no, trueCond, falseCond) SigOnDecision = [] if CondType == "falseCond": SigOnDecision = check.getSigFromCond(falseCond[CondNo], AllSigList) print("Coverage {} requires {} to be false".format(cov_no, falseCond[CondNo])) else: SigOnDecision = check.getSigFromCond(trueCond[CondNo], AllSigList) print("Coverage {} requires {} to be true".format(cov_no, trueCond[CondNo])) print("It involves Signal : {}".format(SigOnDecision)) SigAssignDict1 = check.GetAllAssignOfSig(SigOnDecision, seqfunc) SigAssgnStrip1 = check.StripSign(SigAssignDict1) NewSig1 = check.findNewSig(SigAssgnStrip1, SigOnDecision, AllSigList) print("Which is assigned values at {}".format(SigAssgnStrip1)) SigAssignDict2 = check.GetAllAssignOfSig(NewSig1, seqfunc) SigAssgnStrip2 = check.StripSign(SigAssignDict2) if len(NewSig1)>0: print("This involves New Signals = {}".format(NewSig1)) print("Which is assigned values at {}".format(SigAssgnStrip2)) if len(SigAssgnStrip2)>0: NewSig2 = [] SigOnDecision += NewSig1 NewSig2 = check.findNewSig(SigAssgnStrip2, SigOnDecision, AllSigList) if len(NewSig2)>0: print("This involves New Signals = {}".format(NewSig2)) SigOnDecision += NewSig2 NewSig3 = "Going 3 levels deep hasn't been implemented, Visit later :)" print(NewSig3) print("Final list of signals on which coverage {} depends {}\n".format(cov_no, SigOnDecision)) # Done getting all signals till here. #z3 signals initialization code z3Sigs = [] flag = 0 for Sigs in SigOnDecision: if type(AllSigList[Sigs]) == int: msb = AllSigList[Sigs] z3Sigs.append(BitVec('{}'.format(Sigs), msb)) # print("{} = BitVec(\'{}\', {})".format(Sigs, Sigs, msb)) else: print("""Error: Probably an array, whose definition for z3 hasn't been written\n\n""") flag = 1 break if flag == 1: continue print("All constraints on final signals are") s = Solver() for idx, cond in enumerate(trueCond): cond = cond.strip().replace(('vlTOPp->'), '').replace('(IData)','') for Sig in SigOnDecision: if re.search(r"\b{}\b".format(Sig), cond) is not None: print("{} should be true".format(trueCond[idx])) clause1 = check.GetZ3String(1, trueCond[idx], SigOnDecision, z3Sigs, parser, generator, AllSigList) if clause1 != "": clauseeval = eval(clause1) s.add(clauseeval) break for idx, cond in enumerate(falseCond): cond = cond.strip().replace(('vlTOPp->'), '').replace('(IData)','') for Sig in SigOnDecision: if re.search(r"\b{}\b".format(Sig), cond) is not None: #if any new signal is found then don't take this cond print("{} should be false".format(falseCond[idx])) clause1 = check.GetZ3String(0, falseCond[idx], SigOnDecision, z3Sigs, parser, generator, AllSigList) if clause1 != "": clauseeval = eval(clause1) s.add(clauseeval) break #need to put main condition first print("Assignments 1 level deep and their coverage no. are {}".format(SigAssgnStrip1)) print("Assignments 2 level deep and their coverage no. are {}".format(SigAssgnStrip2)) satis = [] unsatis = [] for Sig1 in SigAssgnStrip1: Sig1cl = check.GetZ3String(1, Sig1.replace(';',''), SigOnDecision, z3Sigs, parser, generator, AllSigList) if Sig1cl != "": Sig1s = eval(Sig1cl) s.push() s.add(Sig1s) Cover_No = int(SigAssgnStrip1[Sig1]) if s.check() == sat: if Cover_No not in satis: satis.append(Cover_No) else: if Cover_No not in unsatis: unsatis.append(Cover_No) for Sig2 in SigAssgnStrip2: sig2ss = check.GetZ3String(1, Sig2.replace(';',''), SigOnDecision, z3Sigs, parser, generator, AllSigList) if sig2ss != "": sig2s = eval(sig2ss) s.push() s.add(sig2s) # print s.check() Cover_No = int(SigAssgnStrip1[Sig1]) if s.check() == sat: if Cover_No not in satis: satis.append(Cover_No) else: if Cover_No not in unsatis: unsatis.append(Cover_No) s.pop() if Sig1cl != "": s.pop() print("Satisfiable Coverages are {}".format(satis)) print("Unsatisfiable Coverages are {}".format(unsatis)) if ((len(satis) == 0) and (len(unsatis) == 0)): print("Looks like 'Input' so can be assigned any value")
solver = Solver() MEK1 = new_noun("MEK1") ERK1 = new_noun("ERK1") RAF = new_noun("RAF") HRAS = new_noun("HRAS") SAF1 = new_noun("SAF1") ### GENERAL BIOLOGY KNOWLEDGE AXIOMS x = Int('x') y = Int('y') z = Int('z') # Axiom: y is active when phosphorylated => (x phosphorylates y => x activates y) solver.add(ForAll([y], Implies(IsActiveWhenPhosphorylated(y), ForAll([x], Implies(Phosphorylates(x, y), Activates(x, y)))))) # Axiom: If x phosphorylates y, then x is a kinase solver.add(ForAll([x, y], Implies(Phosphorylates(x, y), IsKinase(x)))) # Axiom: If x is active when phosphorylated, then anything which is true of phosphorylated x is true of activated x # Axiom: If x increases activity of y, and y increases activity of z, then x increases activity of z solver.add(ForAll([x, y, z], Implies(ActivityIncreasesActivity(x, y), Implies(ActivityIncreasesActivity(y, z), ActivityIncreasesActivity(x, z))))) # Axiom: If x activates y, x increases the activity of y solver.add(ForAll([x, y], Implies(Activates(x, y), ActivityIncreasesActivity(x, y)))) ### NETWORK-SPECIFIC KNOWLEDGE solver.add(IsKinase(MEK1))
def get_solver(self): solver = Solver() for c in self: solver.add(c.z3_expr) return solver
class LanguageE(object): ''' @author: krojas ============== The language of E ============== The language of E is six sorted, with sorts for (diagrammatic sorts) points, lines, circles, (metric assertions) segments, angles, and areas. There are variables ranging over the first three sorts; a, b, c, ... to range over points L, M, N, ... to range over lines alpha, beta, gamma, ... to range over circles. There is =, <, -------------- Constants -------------- right-angle of angle-sort, 0 -------------- Basic relations -------------- on(a, L): point * line --> bool REQUIRES: ENSURES: true iff point a is on line L same-side(a,b,L): point * point * line --> bool REQUIRES: true ENSURES: true iff points a,b are on the same side of line L between(a,b,c): point * point * point --> bool REQUIRES: a,b, and c are distinct and collinear ENSURES: true iff b is between a and c on(a,alpha): point * circle --> bool REQUIRES: true ENSURES: true iff point a is on circle alpha inside(a, alpha): point * circle --> bool REQUIRES: true ENSURES: point a is inside circle alpha center(a, alpha): point * circle --> bool REQUIRES: true ENSURES: true iff point a is in the center of circle alpha -------------- Additional relations -------------- intersects(L, M): line * line --> bool REQUIRES: true ENSURES: two lines intersect when they have exactly one point in common intersects(L, alpha): line * circle --> bool REQUIRES: true ENSURES: line and a circle intersect when they have exactly two points in common intersects(alpha, beta): circle * circle --> bool REQUIRES: true ENSURES: two circles intersect when they have exactly two points in common. ''' def __init__(self): ''' Constructor ''' print "=== Initializing language EuclidZ3 ===" # # make sorts self.PointSort = DeclareSort("Point") self.LineSort = DeclareSort("Line") self.CircleSort = DeclareSort("Circle") # # make basic relations between diagrammatic sorts self.Between = Function("Between", self.PointSort, self.PointSort, self.PointSort, BoolSort()) self.OnLine = Function("On", self.PointSort, self.LineSort, BoolSort()) self.OnCircle = Function("Onc", self.PointSort, self.CircleSort, BoolSort()) self.Inside = Function ("Inside" , self.PointSort, self.CircleSort, BoolSort()) self.Center = Function ("Center" , self.PointSort, self.CircleSort, BoolSort()) self.SameSide = Function("SameSide", self.PointSort, self.PointSort, self.LineSort, BoolSort()) self.Intersectsll = Function("Intersectsll", self.LineSort, self.LineSort, BoolSort()) self.Intersectslc = Function("Intersectslc", self.LineSort, self.CircleSort, BoolSort()) self.Intersectscc = Function("Intersectscc", self.CircleSort, self.CircleSort, BoolSort()) # # make the magnitude sorts self.Segment = Function("Segment", self.PointSort, self.PointSort, RealSort()) self.Angle = Function("Angle", self.PointSort, self.PointSort, self.PointSort, RealSort()) self.Area = Function("Area", self.PointSort, self.PointSort, self.PointSort, RealSort()) # # make constants/terms self.RightAngle = Const("RightAngle", RealSort()) a, b, c, d, e = Consts('a b c d e', self.PointSort) L, M, N = Consts('L M N' , self.LineSort) alpha, beta = Consts('alpha beta', self.CircleSort) # # assert self.axioms for language E self.axioms = [ ] """ ---------- DIAGRAMMATIC AXIOMS ---------- """ """ Two points determine a line 1. If a != b, a is on L, and b is L, a is on M and b is on M, then L = M """ self.axioms.append(ForAll([a, b, L, M], \ Implies(And(\ Not(a == b), self.OnLine(a, L), self.OnLine(b, L), \ self.OnLine(a, M), self.OnLine(b, M)), \ L == M))) """ self.Center of circle is unique 2. if a and b are both centers of alpha then a=b 3. if a is the center of alpha then a is inside alpha """ self.axioms.append(ForAll([a, b, alpha], \ Implies((And (self.Center(a, alpha), self.Center(b, alpha))), a == b))) self.axioms.append(ForAll([a, alpha], \ Implies(self.Center(a, alpha), self.Inside(a, alpha)))) """ No degenerate circles 4. if a is inside alpha, then a is not on alpha """ self.axioms.append(ForAll([a, alpha] , \ Implies(self.Inside(a, alpha), Not(self.OnCircle(a, alpha))))) """ Strict betweeness 1. If b is between a and c then b is between c and a, a != b, a != c, and a is not between b and c 2. If b is between a and c, a is on L, and b is on L, then c is on L. 3. If b is between a and c, a is on L, and c is on L, then b is on L. 4. If b is between a and c and d is between a and b then d is between a and c. 5. If b is between a and c and c is between b and d then b is between a and d. 6. if a, b, and c are distinct points on a line L, then either b is between a and c, or a is between b and c, or c is between a and b. 7. if b is between a and c and b is between a and d then b is not between c and d. """ self.axioms.append(ForAll([a, b, c], \ Implies(self.Between(a, b, c), \ And(self.Between(c, b, a), Not(a == c), Not(a == b), Not(self.Between(b, a, c)))))) self.axioms.append(ForAll([a, b, c], \ Implies(And(\ self.Between(a, b, c), self.OnLine(a, L), self.OnLine(b, L)), \ self.OnLine(c, L)))) self.axioms.append(ForAll([a, b, c], \ Implies(And(\ self.Between(a, b, c), self.OnLine(a, L), self.OnLine(c, L)), \ self.OnLine(b, L)))) self.axioms.append(ForAll([a, b, c], \ Implies(And(\ self.Between(a, b, c), self.Between(a, d, b)), \ self.Between(a, d, c)))) self.axioms.append(ForAll([a, b, c, d], \ Implies(And(\ self.Between(a, b, c), self.Between(b, c, d)), \ self.Between(a, b, d)))) self.axioms.append(ForAll([a, b, c, L], \ Implies(And(\ self.OnLine(a, L), self.OnLine(b, L), self.OnLine(c, L), \ Not(a == b), Not(a == c), Not(b == c)), \ Or(self.Between(a, b, c), self.Between(b, a, c), self.Between(a, c, b))))) self.axioms.append(ForAll([a, b, c, d], \ Implies(And(\ self.Between(a, b, c), self.Between(a, b, d)), \ Not(self.Between(d, b, c))))) """ Same-side self.axioms 1. if a is not on L, then a and a are on the same side of L. 2. if a and b are on the same side of L, then b and a are on teh same side of L. 3. if a and b are on the same side of L, then a is not on L. 4. if a and b are on the same side of L, and a and c are on the same side of L, then b and c are on the same side L. 5. if a,b, and c are not on L, and a and b are not on the same side of L, then either a and c are on the same side of L, or b """ self.axioms.append(ForAll([a, L], \ Implies(Not(self.OnLine(a, L)), \ self.SameSide(a, a, L)))) self.axioms.append(ForAll([a, b, L], \ Implies(self.SameSide(a, b, L), \ And(Not(self.OnLine(a, L), self.SameSide(b, a, L)))))) self.axioms.append(ForAll([a, b, c, L], \ Implies(And(\ self.SameSide(a, b, L), self.SameSide(a, c, L)), \ self.SameSide(b, c, L)))) self.axioms.append(ForAll([ a, b, c, L], \ Implies(And(\ Not(self.OnLine(a, L)), Not(self.OnLine(b, L)), Not(self.OnLine(c, L))), \ Or(self.SameSide(a, b, L), self.SameSide(a, c, L), self.SameSide(b, c, L))))) # # TODO: check this axiom below with avigad, # # "either a and c are sameside L, or b" # # is that sameside(a,c,L) or sameside(b,c,L) and NOT both? self.axioms.append(ForAll([a, b, c, L], \ Implies(And(\ Not(self.OnLine(a, L)), Not(self.OnLine(b, L)), Not(self.OnLine(c, L)), \ Not(self.SameSide(a, b, L))), \ Or(self.SameSide(a, c, L), self.SameSide(b, c, L))))) """ Pasch self.axioms 1. if b is between a and c, and a and c are on the same side of L, then a and b are on teh same side of L. 2. if b is between a and c, and a is on L and b is not on L, then b and c are on the same side of L. 3. if b is between a and c and b is on L then a and c are not on the same side of L 4. if b is the intersection of distinct lines L and M, a and c are distinct points on m, a != b, c !=b, and a and c are not on teh same side of L, then b is between a and c. """ self.axioms.append(ForAll([a, b, c, L], \ Implies(And(\ self.Between(a, b, c), self.SameSide(a, c, L)), \ self.SameSide(a, b, L)))) self.axioms.append(ForAll([a, b, c, L], \ Implies(And(\ self.Between(a, b, c), self.OnLine(a, L), Not(self.OnLine(b, L))), \ self.SameSide(b, c, L)))) self.axioms.append(ForAll([a, b, c, L], \ Implies(And(\ self.Between(a, b, c), self.OnLine(b, L)), \ Not(self.SameSide(a, c, L))))) self.axioms.append(ForAll([a, b, c, L, M], \ Implies(And(\ Not(a == b), Not(b == c), Not(L == M), \ self.OnLine(a, M), self.OnLine(b, M), self.OnLine(c, M), Not(self.SameSide(a, c, L)), self.OnLine(b, L)), \ self.Between(a, b, c)))) """ Triple incidence self.axioms 1. if L, M, and N are lines meeting at a point a, and b, c, and d are points on L, M,and N resctively, and if c and d are on the same side of L, and b and c are on the same side of N, then b and d are not on the same side of M. 2. if L,M,N are lines meeting at a point a, and b, c, and d are points on L M and N respectively, and if c and d are on the same side of L, and b and d are not on the same side of M, and d is not on M and b != a, then b and c are on the same side of N. 3. If L, M and N are lines meeting at a point a, and b, c, and d are points on L,M, and N respectively, and if c and d are on the same side of L, and b and c are on the same side of N, and d and e are on the sameside of M, and c and e are on the same side of N, then c and e are on the same side of L. """ self.axioms.append(ForAll([a, b, c, d, L, M, N], \ Implies(And(\ self.OnLine(a, L), self.OnLine(a, M), self.OnLine(a, N), self.OnLine(b, L), self.OnLine(c, M), self.OnLine(d, N), \ self.SameSide(c, d, L), self.SameSide(b, c, N)), \ Not(self.SameSide(b, d, M))))) self.axioms.append(ForAll([a, b, c, d], \ Implies(And(\ self.OnLine(a, L), self.OnLine(a, M), self.OnLine(a, N), \ self.OnLine(b, L), self.OnLine(c, M), self.OnLine(d, N), \ self.SameSide(c, d, L), Not(self.SameSide(d, b, M)), Not(self.OnLine(d, M)), Not(b == a)), \ self.SameSide(b, c, N)))) self.axioms.append(ForAll([a, b, c, d, e, L, M, N], \ Implies(And(\ self.OnLine(a, L), self.OnLine(c, M), self.OnLine(a, N), self.OnLine(b, L), \ self.OnLine(c, M), self.OnLine(d, N), self.SameSide(b, c, N), self.SameSide(d, c, L), \ self.SameSide(d, e, M), self.SameSide(c, e, N)), \ self.SameSide(c, e, L)))) """ Circle self.axioms """ self.axioms.append(ForAll([a, b, c, alpha, L], \ Implies(And(\ self.Inside(a, alpha), self.OnCircle(b, alpha), self.OnCircle(c, alpha), \ self.OnLine(a, L), self.OnLine(b, L), self.OnLine(c, L), Not(b == c)), \ self.Between(b, a, c)))) self.axioms.append(ForAll([a, b, c, alpha], \ Implies(And(\ Or(self.Inside(a, alpha), self.OnCircle(a, alpha)), Or(self.Inside(b, alpha), self.OnCircle(b, alpha)), \ self.Between(a, c, b)), \ And(Not(self.Inside(b, alpha)), Not(self.OnCircle(b, alpha)))))) self.axioms.append(ForAll([a, b, c, alpha, L], \ Implies(And(\ Or(self.Inside(a, alpha), self.OnCircle(a, alpha)), Not(self.Inside(c, alpha)), self.Between(a, c, b)), \ And(Not(self.Inside(b, alpha)), Not(self.OnCircle(b, alpha)))))) self.axioms.append(ForAll([a, b, c, d, alpha, beta], \ Implies(And(\ self.OnCircle(c, alpha), self.OnCircle(c, beta), self.OnCircle(d, alpha), self.OnCircle(d, beta), \ Not(alpha == beta), Not(c == d), self.OnLine(a, L), self.OnLine(b, L), \ self.Center(a, alpha), self.Center(a, beta)), \ Not(self.SameSide(c, d, L))))) """ Intersection """ self.axioms.append(ForAll([L, M, a, b], \ Implies(And(\ self.OnLine(a, M), self.OnLine(b, M), Not(self.SameSide(a, b, L))), \ self.Intersectsll(L, M)))) self.axioms.append(ForAll([alpha, L, a, b], \ Implies(And(\ Or(self.Inside(a, alpha), self.OnCircle(a, alpha)), \ Or(self.Inside(b, alpha), self.OnCircle(b, alpha)), \ Not(self.OnLine(a, L)), Not(self.OnLine(b, L)), Not(self.SameSide(a, b, L))), \ self.Intersectslc(L, alpha)))) self.axioms.append(ForAll([L, alpha, a], \ Implies(And(\ self.Inside(a, alpha), self.OnLine(a, L)), \ self.Intersectslc(L, alpha)))) self.axioms.append(ForAll([alpha, beta, a, b], \ Implies(And(\ self.OnCircle(a, alpha), Or(self.Inside(b, alpha), self.OnCircle(b, alpha)), \ self.Inside(a, beta), Not(self.Inside(b, beta)), Not(self.OnCircle(b, beta))), \ self.Intersectscc(alpha, beta)))) self.axioms.append(ForAll([alpha, beta, a, b], \ Implies(And(\ self.OnCircle(a, alpha), self.Inside(b, beta), self.Inside(a, beta), self.OnCircle(b, beta)), \ self.Intersectscc(alpha, beta)))) """ ---------- METRIC AXIOMS ---------- """ """ Segments """ self.axioms.append(ForAll([a, b], \ Implies(self.Segment(a, b) == RealVal(0.0), a == b))) self.axioms.append(ForAll([a], \ self.Segment(a, a) == RealVal(0.0))) self.axioms.append(ForAll([a, b], \ (self.Segment(a, b) >= RealVal(0.0)))) self.axioms.append(ForAll([a, b], \ self.Segment(a, b) == self.Segment(b, a))) """ Angles """ self.axioms.append(ForAll ([a, b, c], \ Implies(And(\ Not(a == b), Not(b == c)), \ self.Angle(a, b, c) == self.Angle(c, b, a)))) self.axioms.append(ForAll ([a, b, c], \ Implies(And(\ Not((a == b)), Not((b == c))), \ And(\ self.Angle(a, b, c) >= RealVal(0.0), \ self.Angle(a, b, c) <= (self.RightAngle + self.RightAngle))))) """ Areas """ self.axioms.append(ForAll([a, b], \ self.Area(a, a, b) == RealVal(0.0))) self.axioms.append(ForAll([a, b, c], \ self.Area(a, b, c) >= RealVal(0.0))) self.axioms.append(ForAll([a, b, c], \ And(self.Area(a, b, c) == self.Area(c, a, b), self.Area(a, b, c) == self.Area(b, a, c)))) """ ---------- Transfer AXIOMS ---------- """ """ Diagram-segment transfer self.axioms """ self.axioms.append(ForAll([a, b, c], \ Implies(self.Between(a, b, c), ((self.Segment(a, b) + self.Segment(b, c)) == self.Segment(a, c))))) # # center and radius determine circle self.axioms.append(ForAll([a, b, c, alpha, beta], \ Implies(And(\ self.Center(a, alpha), self.Center(a, beta), self.OnCircle(b, alpha), self.OnCircle(c, beta), \ self.Segment(a, b) == self.Segment(a, c)), \ (alpha == beta)))) self.axioms.append(ForAll([a, b, c, alpha], \ Implies(And(self.Center(a, alpha), self.OnCircle(b, beta), self.Segment(a, c) == self.Segment(a, b)), \ self.OnCircle(c, alpha)))) self.axioms.append(ForAll([a, b, c, alpha], \ Implies(And(\ self.Center(a, alpha), self.OnCircle(b, alpha)), \ ((self.Segment(a, c) == self.Segment(a, b)) == self.Inside(c, alpha))))) """ Diagram-angle transfer self.axioms """ self.axioms.append(ForAll([a, b, c, L], \ Implies(And(\ Not((a == b)), Not((a == c)), self.OnLine(a, L), self.OnLine(b, L)), \ (And(self.OnLine(c, L), Not(self.Between(c, a, b))) == (self.Angle(b, a, c) == RealVal(0.0)))))) # # Possibly this is superfluous self.axioms.append(ForAll([a, b], \ Implies(Not((a == b)), self.Angle(a, b, a) == RealVal(0.0)))) # # Point inside angle iff angles sum self.axioms.append(ForAll([a, b, c, d, L, M], \ Implies(And(\ self.OnLine(a, L), self.OnLine(b, L), self.OnLine(a, M), self.OnLine(c, M), \ Not((a == b)), Not((a == c)), Not(self.OnLine(d, L)), Not(self.OnLine(d, M)), \ Not((L == M))), \ ((self.Angle(b, a, c) == (self.Angle(b, a, d) + self.Angle(d, a, c))) == \ And(self.SameSide(b, d, M), self.SameSide(d, c, L)))))) # # Define right angle (and all right angles are equal) self.axioms.append(ForAll([a, b, c, d, L], \ Implies(And(\ self.OnLine(a, L), self.OnLine(b, L), self.Between(a, c, b), Not(self.OnLine(d, L))), \ ((self.Angle(a, c, d) == self.Angle(d, c, b)) == (self.Angle(a, c, d) == self.RightAngle))))) """ Diagram-area transfer self.axioms """ self.axioms.append(ForAll([a, b, c, L], \ Implies(And(\ self.OnLine(a, L), self.OnLine(b, L), Not((a == b))), \ ((self.Area(a, b, c) == RealVal(0.0)) == self.OnLine(c, L))))) # # Sum of Areas self.axioms.append(ForAll([a, b, c, d, L], \ Implies(And(\ self.OnLine(a, L), self.OnLine(b, L), self.OnLine(c, L), Not(self.OnLine(d, L)), \ Not((a == b)), Not((c == a)), Not((c == b))), \ (self.Between(a, c, b) == ((self.Area(a, c, d) + self.Area(d, c, b)) == self.Area(a, d, b)))))) self.solver = Solver() self.solver.add(self.axioms) print "Axiom set : " + str(self.solver.check())
def print_dword(dword): sys.stdout.write(chr(dword & 0xFF) + chr((dword >> 8) & 0xFF) + chr((dword >> 16) & 0xFF) + chr((dword >> 24) & 0xFF)) dword_1 = BitVec('dword_1', 32) dword_2 = BitVec('dword_2', 32) dword_3 = BitVec('dword_3', 32) dword_4 = BitVec('dword_4', 32) dword_5 = BitVec('dword_5', 32) dword_6 = BitVec('dword_6', 32) dword_7 = BitVec('dword_7', 32) dword_8 = BitVec('dword_8', 32) s = Solver() s.add(dword_3 + dword_2 == 0x0C0DCDFCE) s.add(dword_3 + dword_2 == 0x0C0DCDFCE) s.add(dword_2 + dword_1 == 0x0D5D3DDDC) s.add((dword_2 * 5) + (dword_1 * 3) == 0x404A7666) s.add((dword_4 ^ dword_1) == 0x18030607) s.add((dword_1 & dword_4) == 0x666C6970) s.add(dword_2 * dword_5 == 0xB180902B) s.add(dword_5 * dword_3 == 0x3E436B5F) s.add(dword_5 + (dword_6 * 2) == 0x5C483831) s.add((dword_6 & 0x70000000) == 0x70000000) s.add(dword_6 / dword_7 == 1) s.add(dword_6 % dword_7 == 0x0E000CEC) s.add((dword_5 * 3) + (dword_8 * 2) == 0x3726EB17) s.add((dword_8 * 7) + (dword_3 * 4) == 0x8B0B922D) s.add((dword_8 * 3) + dword_4 == 0xB9CF9C91)