Пример #1
0
    def __init__(self, instrument, granularity, models_loc):

        while True:
            self.market_encoder = LSTMEncoder()
            self.actor_critic = ActorCritic()
            self.encoder_to_others = EncoderToOthers()
            try:
                self.market_encoder.load_state_dict(torch.load(models_loc + 'market_encoder.pt', map_location='cpu'))
                self.encoder_to_others.load_state_dict(torch.load(models_loc + 'encoder_to_others.pt', map_location='cpu'))
                self.actor_critic.load_state_dict(torch.load(models_loc + 'actor_critic.pt', map_location='cpu'))
                self.market_encoder = self.market_encoder.cpu()
                self.encoder_to_others = self.encoder_to_others.cpu()
                self.actor_critic = self.actor_critic.cpu()
                break
            except Exception:
                print("Failed to load models")
                time.sleep(0.1)

        self.models_loc = models_loc

        self.instrument = instrument
        self.granularity = granularity
        self.zeus = Zeus(instrument, granularity)
        self.live = False

        self.time_states = []

        self.window = networks.WINDOW

        self.tradeable_percentage = 1
        self.trade_percent = self.tradeable_percentage / 1000
Пример #2
0
class Worker(object):

    def __init__(self, instrument, granularity, server_host, start, max_time):
        self.server = redis.Redis(server_host)
        self.zeus = Zeus(instrument, granularity)

        self.window = networks.WINDOW + 10
        self.start = start

        self.time_states = []
        self.last_time = None
        self.max_time = max_time

        self.max_sent = 100
        self.n_sent = 0

        self.t0 = 0

    def add_bar(self, bar):
        if self.n_sent == self.max_sent or bar.date > self.max_time:
            print("experiences sent: {n_sent}, time: {time}".format(n_sent=self.n_sent, time=time.time()-self.t0))
            quit()
        time_state = [bar.open, bar.high, bar.low, bar.close]

        if bar.date != self.last_time:
            self.time_states.append(time_state)
            self.last_time = bar.date

            if len(self.time_states) > self.window:
                del self.time_states[0]

            if len(self.time_states) == self.window:
                experience = Experience(time_states=self.time_states)
                experience = msgpack.packb(experience, use_bin_type=True)
                n_experiences = self.server.llen("experience")
                try:
                    loc = np.random.randint(0, n_experiences)
                    ref = self.server.lindex("experience", loc)
                    self.server.linsert("experience", "before", ref, experience)
                except Exception as e:
                    self.server.lpush("experience", experience)
                self.n_sent += 1

                # self.time_states = []
                del self.time_states[:10]

    def run(self):
        self.t0 = time.time()
        start = self.start
        while self.n_sent < self.max_sent:
            n_seconds = (self.window - len(self.time_states) + (self.max_sent - self.n_sent)) * 60 * 10
            self.zeus.stream_range(start, start + n_seconds, self.add_bar)
            start += n_seconds

        print("experiences sent: {n_sent}, time: {time}".format(n_sent=self.n_sent, time=time.time()-self.t0))
Пример #3
0
    def run(self):
        self.market_encoder.eval()
        self.encoder_to_others.eval()
        self.actor_critic.eval()

        print("fetching last", self.window, "bars...")
        self.zeus.stream_bars(self.window, self.add_bar)

        print("going live...")
        self.live = True
        self.zeus = Zeus(self.instrument, self.granularity, live=True)
        self.zeus.stream_live(self.add_bar)
Пример #4
0
    def __init__(self, instrument, granularity, server_host, start):
        self.server = redis.Redis(server_host)
        self.zeus = Zeus(instrument, granularity)
        self.n_steps_future = int(
            self.server.get("n_steps_future").decode("utf-8"))

        self.window = networks.WINDOW
        self.start = start

        self.time_states = []
        self.last_time = None

        self.n_sent = 0
Пример #5
0
    def __init__(self, instrument, granularity, n_steps, models_loc):

        self.server = redis.Redis("localhost")
        self.instrument = instrument
        self.granularity = granularity
        self.zeus = Zeus(instrument, granularity)

        while True:
            # putting this while loop here because sometime the optimizer
            # is writing to the files and causes an exception
            # self.market_encoder = AttentionMarketEncoder(device='cpu')
            self.market_encoder = CNNEncoder().cpu()
            self.decoder = ClassifierDecoder().cpu()
            try:
                self.market_encoder.load_state_dict(
                    torch.load(models_loc + 'market_encoder.pt'))
                self.decoder.load_state_dict(
                    torch.load(models_loc + 'decoder.pt'))
                self.market_encoder = self.market_encoder.cpu()
                self.decoder = self.decoder.cpu()
                break
            except Exception as e:
                print(e)

        self.trajectory_steps = float(
            self.server.get("trajectory_steps").decode("utf-8"))
        self.window = networks.WINDOW
        self.n_steps = n_steps

        self.time_states = []

        self.trade = None
        self.pos = None

        self.n_steps_future = 1
        self.steps_since_trade = 1

        self.cur_value = self.zeus.unrealized_balance()
        self.prev_value = self.cur_value

        self.n = 0
        self.n_profit = 0
        self.n_loss = 0
        self.n_buy = 0
        self.n_sell = 0
        self.n_stay = 0

        self.profit = 0

        self.stop_loss = None
        self.take_profit = None
Пример #6
0
    def __init__(self, instrument, granularity, server_host, start, max_time):
        self.server = redis.Redis(server_host)
        self.zeus = Zeus(instrument, granularity)

        self.window = networks.WINDOW + 10
        self.start = start

        self.time_states = []
        self.last_time = None
        self.max_time = max_time

        self.max_sent = 100
        self.n_sent = 0

        self.t0 = 0
Пример #7
0
class Worker(object):
    def __init__(self, instrument, granularity, server_host, start):
        self.server = redis.Redis(server_host)
        self.zeus = Zeus(instrument, granularity)
        self.n_steps_future = int(
            self.server.get("n_steps_future").decode("utf-8"))

        self.window = networks.WINDOW
        self.start = start

        self.time_states = []
        self.last_time = None

        self.n_sent = 0

    def add_bar(self, bar):
        time_state = [[[bar.open, bar.high, bar.low, bar.close]]]

        if bar.date != self.last_time:
            self.time_states.append(time_state)

        if len(self.time_states) > self.window + self.n_steps_future:
            del self.time_states[0]

        if bar.date != self.last_time and len(
                self.time_states) == self.window + self.n_steps_future:
            experience = Experience(self.time_states)
            experience = msgpack.packb(experience, use_bin_type=True)
            self.server.lpush("experience", experience)
            # self.server.lpush("experience_dev", experience)
            self.n_sent += 1
            del self.time_states[:self.n_steps_future]
            # self.time_states = []

        self.last_time = bar.date

    def run(self):
        t0 = time.time()
        start = self.start
        while self.n_sent < 100:
            n_seconds = (self.window + self.n_steps_future -
                         len(self.time_states) + (self.n_steps_future *
                                                  (100 - self.n_sent))) * 60
            # n_seconds = 10000 * 60
            self.zeus.stream_range(start, start + n_seconds, self.add_bar)
            start += n_seconds

        print("time: {time}".format(time=time.time() - t0))
Пример #8
0
    def __init__(self, instrument, granularity, server_host, start,
                 max_bar_time, models_loc):
        self.server = redis.Redis(server_host)
        self.zeus = Zeus(instrument, granularity, margin=1)
        self.models_loc = models_loc

        self.window = networks.WINDOW
        self.start = start
        self.max_bar_time = max_bar_time

        self.time_states = []
        self.last_time = None

        self.generator = Generator().cuda()
        try:
            self.generator.load_state_dict(
                torch.load(self.models_loc + 'generator.pt',
                           map_location='cuda'))
        except FileNotFoundError as e:
            print("model load failed", e)
            self.generator = Generator().cuda()

        self.generator.eval()

        n = 0
        for name, param in self.generator.named_parameters():
            # print(np.prod(param.size()), name)
            n += np.prod(param.size())
        print("generator parameters:", n)

        # for name, param in self.generator.named_parameters():
        #     print(param.std(), name)

        self.n_future_samples = 100
        self.n_steps_future = 10

        self.plot = 0

        self.step = 0

        self.last_price = None
        self.last_action = None
        self.steps_since_trade = 0
        self.n_correct = 0
        self.n_trades = 0
        self.n = 0

        self.t0 = 0
Пример #9
0
class Worker(object):
    def __init__(self, instrument, granularity, n_steps, models_loc):

        self.server = redis.Redis("localhost")
        self.instrument = instrument
        self.granularity = granularity
        self.zeus = Zeus(instrument, granularity)

        while True:
            # putting this while loop here because sometime the optimizer
            # is writing to the files and causes an exception
            # self.market_encoder = AttentionMarketEncoder(device='cpu')
            self.market_encoder = CNNEncoder().cpu()
            self.decoder = ClassifierDecoder().cpu()
            try:
                self.market_encoder.load_state_dict(
                    torch.load(models_loc + 'market_encoder.pt'))
                self.decoder.load_state_dict(
                    torch.load(models_loc + 'decoder.pt'))
                self.market_encoder = self.market_encoder.cpu()
                self.decoder = self.decoder.cpu()
                break
            except Exception as e:
                print(e)

        self.trajectory_steps = float(
            self.server.get("trajectory_steps").decode("utf-8"))
        self.window = networks.WINDOW
        self.n_steps = n_steps

        self.time_states = []

        self.trade = None
        self.pos = None

        self.n_steps_future = 1
        self.steps_since_trade = 1

        self.cur_value = self.zeus.unrealized_balance()
        self.prev_value = self.cur_value

        self.n = 0
        self.n_profit = 0
        self.n_loss = 0
        self.n_buy = 0
        self.n_sell = 0
        self.n_stay = 0

        self.profit = 0

        self.stop_loss = None
        self.take_profit = None

    def add_bar(self, bar):
        if self.pos == "Long" and self.trade is not None:
            if bar.close > self.take_profit or bar.close < self.stop_loss:
                self.zeus.close_trade(self.trade)
                self.trade = None
        elif self.pos == "Short" and self.trade is not None:
            if bar.close < self.take_profit or bar.close > self.stop_loss:
                self.zeus.close_trade(self.trade)
                self.trade = None

        time_state = torch.Tensor([
            bar.open, bar.high, bar.low, bar.close,
            np.log(bar.volume + 1e-1)
        ]).view(1, 1, -1)
        self.time_states.append(time_state)
        if len(self.time_states) > self.window:
            del self.time_states[0]
        spread = bar.spread
        if len(self.time_states) == self.window and (
                self.steps_since_trade >= self.n_steps_future or
            (self.pos != "Stay" and self.trade is None)):
            print(bar)
            print(self.trade)

            time_states_ = torch.cat(self.time_states, dim=1).clone()
            mean = time_states_[:, :, :4].contiguous().view(1,
                                                            -1).mean(1).view(
                                                                1, 1, 1)
            std = time_states_[:, :, :4].contiguous().view(1, -1).std(1).view(
                1, 1, 1)
            time_states_[:, :, :4] = (time_states_[:, :, :4] - mean) / std
            spread_ = torch.Tensor([spread]).view(1, 1, 1) / std
            time_states_ = time_states_.transpose(0, 1)

            self.n_steps_future = self.trajectory_steps
            # confidence_interval = np.random.exponential(0.0015)
            confidence_interval = 0.001
            print("confidence:", confidence_interval)

            market_encoding = self.market_encoder.forward(time_states_)
            probabilities = self.decoder.forward(
                market_encoding, spread_ * std, std,
                torch.Tensor([confidence_interval]))
            print(probabilities)

            # action = int(torch.argmax(probabilities.squeeze()))
            # print("argmax")
            # action = int(torch.argmax(probabilities.squeeze()[:2]))
            # print("argmax without hold")
            action = int(torch.multinomial(probabilities.squeeze(), 1))
            print("sampled")
            # action = int(torch.multinomial(probabilities.squeeze()[:2], 1))
            # print("sampled without hold")
            # action = np.random.randint(0, 2)
            # print("random")

            if action == 0:
                self.stop_loss = self.time_states[-1][0, 0, 3] * (
                    1 - confidence_interval) - spread
                self.take_profit = self.time_states[-1][0, 0, 3] * (
                    1 + confidence_interval) - spread
                self.n_buy += 1
                if self.pos != "Long":
                    if self.trade is not None:
                        self.zeus.close_trade(self.trade)
                    self.trade = self.zeus.place_trade(100, "Long")
                self.pos = "Long"
                print(
                    "+++++++++++++++++++++++++++++++++++++++++++++++++++++++")
            elif action == 1:
                self.stop_loss = self.time_states[-1][0, 0, 3] * (
                    1 + confidence_interval) - spread
                self.take_profit = self.time_states[-1][0, 0, 3] * (
                    1 - confidence_interval) - spread
                self.n_sell += 1
                if self.pos != "Short":
                    if self.trade is not None:
                        self.zeus.close_trade(self.trade)
                    self.trade = self.zeus.place_trade(100, "Short")
                self.pos = "Short"
                print(
                    "-------------------------------------------------------")
            else:
                self.stop_loss = None
                self.take_profit = None
                self.n_stay += 1
                if self.trade is not None:
                    self.zeus.close_trade(self.trade)
                    self.trade = None
                self.pos = "Stay"
                print(
                    "///////////////////////////////////////////////////////")

            self.cur_value = self.zeus.unrealized_balance()
            print(self.cur_value)

            self.steps_since_trade = 0
            if self.prev_value < self.cur_value:
                self.n_profit += 1
            elif self.prev_value > self.cur_value:
                self.n_loss += 1
            self.profit += self.cur_value - self.prev_value
            self.n += 1

            print("profit this trade:", self.cur_value - self.prev_value)
            print("profit:", self.profit)
            print("profit per trade:", self.profit / self.n)
            print("gain per trade:", self.profit / (self.n * 1000))
            print("p loss:", self.n_loss / self.n)
            print("p profit:", self.n_profit / self.n)
            print("total trades:", self.n)
            print("p buy:", self.n_buy / self.n)
            print("p sell:", self.n_sell / self.n)
            print("p stay:", self.n_stay / self.n)
            print()

            self.prev_value = self.cur_value

        else:
            self.steps_since_trade += 1

    def run(self):
        self.zeus.stream_bars(self.n_steps, self.add_bar)
        for size_ in param.size():
            prod *= size_ if size_ != 0 else 1
        n_param += prod
print("n params all networks", n_param)

MEN.eval()
ETO.eval()
PN.eval()
ACN.eval()

instrument = np.random.choice(["EUR_USD", "GBP_USD", "AUD_USD", "NZD_USD"])
start = np.random.randint(1136073600, 1546300800)
# instrument = "EUR_USD"
# start = np.random.randint(1546214400, 1546819200)

zeus = Zeus(instrument, "M1")

time_states = []
steps_since_last = 0
def add_bar(bar):
    global steps_since_last
    steps_since_last += 1
    time_state = [[[bar.open, bar.high, bar.low, bar.close, np.log(bar.volume + 1e-1)]]]

    if len(time_states) == 0 or time_state != time_states[-1]:
        time_states.append(time_state)
    else:
        return

    if len(time_states) >= networks.WINDOW and steps_since_last >= networks.WINDOW:
        percent_in = zeus.position_size() / (abs(zeus.position_size()) + zeus.units_available() + 1e-9)
Пример #11
0
class Worker(object):

    def __init__(self, instrument, granularity, models_loc):

        while True:
            self.market_encoder = LSTMEncoder()
            self.actor_critic = ActorCritic()
            self.encoder_to_others = EncoderToOthers()
            try:
                self.market_encoder.load_state_dict(torch.load(models_loc + 'market_encoder.pt', map_location='cpu'))
                self.encoder_to_others.load_state_dict(torch.load(models_loc + 'encoder_to_others.pt', map_location='cpu'))
                self.actor_critic.load_state_dict(torch.load(models_loc + 'actor_critic.pt', map_location='cpu'))
                self.market_encoder = self.market_encoder.cpu()
                self.encoder_to_others = self.encoder_to_others.cpu()
                self.actor_critic = self.actor_critic.cpu()
                break
            except Exception:
                print("Failed to load models")
                time.sleep(0.1)

        self.models_loc = models_loc

        self.instrument = instrument
        self.granularity = granularity
        self.zeus = Zeus(instrument, granularity)
        self.live = False

        self.time_states = []

        self.window = networks.WINDOW

        self.tradeable_percentage = 1
        self.trade_percent = self.tradeable_percentage / 1000


    def add_bar(self, bar):
        time_state = [[[bar.open, bar.high, bar.low, bar.close, np.log(bar.volume + 1e-1)]]]

        if len(self.time_states) == 0 or time_state != self.time_states[-1]:
            self.time_states.append(time_state)
        else:
            return

        if len(self.time_states) == self.window + 1:
            del self.time_states[0]

        if len(self.time_states) == self.window and self.live:
            in_ = self.zeus.position_size()
            available_ = self.zeus.units_available()
            percent_in = (in_ / (abs(in_) + available_ + 1e-9)) / self.tradeable_percentage

            input_time_states = torch.Tensor(self.time_states).view(self.window, 1, networks.D_BAR).cpu()
            mean = input_time_states[:, 0, :4].mean()
            std = input_time_states[:, 0, :4].std()
            input_time_states[:, 0, :4] = (input_time_states[:, 0, :4] - mean) / std
            spread_normalized = bar.spread / std

            market_encoding = self.market_encoder.forward(input_time_states)
            market_encoding = self.encoder_to_others.forward(market_encoding, torch.Tensor([spread_normalized]), torch.Tensor([percent_in]))

            policy, value = self.actor_critic.forward(market_encoding)

            # action = torch.argmax(policy).item()
            action = torch.multinomial(policy, 1).item()

            def place_action(desired_percent):
                current_percent_in = percent_in * self.tradeable_percentage

                if desired_percent == 0 and current_percent_in != 0:
                    self.zeus.close_units(self.zeus.position_size())
                elif desired_percent > 0 and current_percent_in > 0:
                    if desired_percent > current_percent_in:
                        total_tradeable = abs(self.zeus.position_size()) + self.zeus.units_available()
                        self.zeus.place_trade(int(abs(desired_percent - current_percent_in) * total_tradeable), "Long")
                    else:
                        total_tradeable = abs(self.zeus.position_size()) + self.zeus.units_available()
                        self.zeus.close_units(int(abs((desired_percent - current_percent_in)) * total_tradeable))

                elif desired_percent > 0 and current_percent_in <= 0:
                    self.zeus.close_units(self.zeus.position_size())
                    total_tradeable = abs(self.zeus.position_size()) + self.zeus.units_available()
                    self.zeus.place_trade(int(abs(desired_percent) * total_tradeable), "Long")

                elif desired_percent < 0 and current_percent_in > 0:
                    self.zeus.close_units(self.zeus.position_size())
                    total_tradeable = abs(self.zeus.position_size()) + self.zeus.units_available()
                    self.zeus.place_trade(int(abs(desired_percent) * total_tradeable), "Short")

                elif desired_percent < 0 and current_percent_in <= 0:
                    if desired_percent <= current_percent_in:
                        total_tradeable = abs(self.zeus.position_size()) + self.zeus.units_available()
                        self.zeus.place_trade(int(abs(desired_percent - current_percent_in) * total_tradeable), "Short")
                    else:
                        total_tradeable = abs(self.zeus.position_size()) + self.zeus.units_available()
                        self.zeus.close_units(int(abs((desired_percent - current_percent_in)) * total_tradeable))

            change_amounts = {0:-100, 1:-50, 2:-10, 3:-5, 4:-1, 5:0, 6:1, 7:5, 8:10, 9:50, 10:100}
            if action in change_amounts:
                desired_percent_in = (percent_in * self.tradeable_percentage) + (self.trade_percent * change_amounts[action])
                desired_percent_in = np.clip(desired_percent_in, -self.tradeable_percentage, self.tradeable_percentage)
                place_action(desired_percent_in)

            print("instrument", self.instrument)
            print("purchased:", change_amounts[action])
            print("percent in:", round(percent_in, 5))
            for i, policy_ in enumerate(policy.tolist()[0]):
                print("probability {i}: {p}".format(i=i, p=round(policy_, 5)))
            print("-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-")

        torch.cuda.empty_cache()

    def run(self):
        self.market_encoder.eval()
        self.encoder_to_others.eval()
        self.actor_critic.eval()

        print("fetching last", self.window, "bars...")
        self.zeus.stream_bars(self.window, self.add_bar)

        print("going live...")
        self.live = True
        self.zeus = Zeus(self.instrument, self.granularity, live=True)
        self.zeus.stream_live(self.add_bar)
Пример #12
0
class Worker(object):
    def __init__(self, instrument, granularity, n_steps, models_loc):

        self.server = redis.Redis("localhost")
        self.instrument = instrument
        self.granularity = granularity
        self.zeus = Zeus(instrument, granularity)

        while True:
            # putting this while loop here because sometime the optimizer
            # is writing to the files and causes an exception
            # self.market_encoder = AttentionMarketEncoder(device='cpu')
            self.market_encoder = CNNEncoder().cpu()
            self.decoder = Decoder().cpu()
            try:
                self.market_encoder.load_state_dict(
                    torch.load(models_loc + 'market_encoder.pt'))
                self.decoder.load_state_dict(
                    torch.load(models_loc + 'decoder.pt'))
                self.market_encoder = self.market_encoder.cpu()
                self.decoder = self.decoder.cpu()
                break
            except Exception as e:
                print(e)

        self.window = networks.WINDOW
        self.n_steps = n_steps

        self.time_states = []

        self.trade = None
        self.pos = None

        self.n_steps_future = 1
        self.steps_since_trade = 1

        self.cur_value = self.zeus.unrealized_balance()
        self.prev_value = self.cur_value

        self.n = 0
        self.n_profit = 0
        self.n_loss = 0
        self.n_buy = 0
        self.n_sell = 0
        self.n_stay = 0

        self.profit = 0

    def add_bar(self, bar):
        time_state = torch.Tensor([
            bar.open, bar.high, bar.low, bar.close,
            np.log(bar.volume + 1e-1)
        ]).view(1, 1, -1)
        self.time_states.append(time_state)
        if len(self.time_states) > self.window:
            del self.time_states[0]
        spread = bar.spread
        if len(
                self.time_states
        ) == self.window and self.steps_since_trade >= self.n_steps_future:

            if self.trade is not None:
                self.zeus.close_trade(self.trade)

            time_states_ = torch.cat(self.time_states, dim=1).clone()
            mean = time_states_[:, :, :4].contiguous().view(1,
                                                            -1).mean(1).view(
                                                                1, 1, 1)
            std = time_states_[:, :, :4].contiguous().view(1, -1).std(1).view(
                1, 1, 1)
            time_states_[:, :, :4] = (time_states_[:, :, :4] - mean) / std
            spread_ = torch.Tensor([spread]).view(1, 1, 1) / std
            time_states_ = time_states_.transpose(0, 1)

            self.n_steps_future = np.random.randint(1, 60)
            self.n_steps_future = 30
            print(self.n_steps_future)

            market_encoding = self.market_encoder.forward(time_states_)
            value_ = self.decoder.forward(
                market_encoding, spread_,
                torch.Tensor([self.n_steps_future]).log())
            print(value_)

            # action = int(torch.argmax(torch.cat([value_.squeeze(), torch.Tensor([0])], dim=0)))
            # print("calculated with 0")
            action = int(torch.argmax(value_.squeeze()))
            print("calculated without 0")
            # action = np.random.randint(0, 2)
            # print("random")

            if action == 0:
                self.n_buy += 1
                if self.pos != "Long":
                    self.trade = self.zeus.place_trade(1000, "Long")
                self.pos = "Long"
                print(
                    "+++++++++++++++++++++++++++++++++++++++++++++++++++++++")
            elif action == 1:
                self.n_sell += 1
                if self.pos != "Short":
                    self.trade = self.zeus.place_trade(1000, "Short")
                self.pos = "Short"
                print(
                    "-------------------------------------------------------")
            else:
                self.n_stay += 1
                self.trade = None
                self.pos = "Stay"
                print(
                    "///////////////////////////////////////////////////////")

            self.cur_value = self.zeus.unrealized_balance()
            print(self.cur_value)

            self.steps_since_trade = 0
            if self.prev_value < self.cur_value:
                self.n_profit += 1
            elif self.prev_value > self.cur_value:
                self.n_loss += 1
            self.profit += self.cur_value - self.prev_value
            self.n += 1

            print("profit this trade:", self.cur_value - self.prev_value)
            print("profit:", self.profit)
            print("profit per trade:", self.profit / self.n)
            print("gain per trade:", self.profit / (self.n * 1000))
            print("p loss:", self.n_loss / self.n)
            print("p profit:", self.n_profit / self.n)
            print("total trades:", self.n)
            print("p buy:", self.n_buy / self.n)
            print("p sell:", self.n_sell / self.n)
            print("p stay:", self.n_stay / self.n)
            print()

            self.prev_value = self.cur_value

        else:
            self.steps_since_trade += 1

    def run(self):
        self.zeus.stream_bars(self.n_steps, self.add_bar)
Пример #13
0
n_bars_ = 0


def thing(bar):
    global n_bars_
    global zeus
    id = zeus.place_trade(100, "Long")
    print(zeus.close_trade(id))
    print(bar)
    print(zeus.current_balance())
    print(zeus.unrealized_balance())
    print()
    n_bars_ += 1


zeus = Zeus("EUR_USD", "M1")
# zeus.stream_bars(100, thing)
# print(zeus.unrealized_balance())
start = 1136073600  # 2006
n_bars = 1440
while n_bars_ != n_bars:
    n_seconds = (n_bars - n_bars_) * 60
    zeus.stream_range(start, start + n_seconds, thing)
    start += n_seconds
'''
zeus = cdll.LoadLibrary('target/debug/libzeus.so')

zeus.create_session.restype = c_void_p
sess = zeus.create_session("EUR_USD", "M", 1)

zeus.test.restype = c_void_p
Пример #14
0
class Worker(object):

    def __init__(self, name, instrument, granularity, server_host, start, test=False):

        if not test:
            torch.set_default_tensor_type(torch.FloatTensor)
        else:
            torch.set_default_tensor_type(torch.cuda.FloatTensor)

        self.name = name
        self.instrument = instrument
        self.granularity = granularity
        self.server = redis.Redis(server_host)

        while True:
            if not test:
                self.market_encoder = Encoder().cpu()
                self.actor_critic = ActorCritic().cpu()

                try:
                    MEN_compressed_state_dict = self.server.get("market_encoder")
                    ACN_compressed_state_dict = self.server.get("actor_critic")

                    MEN_state_dict_buffer = pickle.loads(MEN_compressed_state_dict)
                    ACN_state_dict_buffer = pickle.loads(ACN_compressed_state_dict)

                    MEN_state_dict_buffer.seek(0)
                    ACN_state_dict_buffer.seek(0)

                    self.market_encoder.load_state_dict(torch.load(MEN_state_dict_buffer, map_location='cpu'))
                    self.actor_critic.load_state_dict(torch.load(ACN_state_dict_buffer, map_location='cpu'))

                    break
                except Exception as e:
                    print("Failed to load models")
                    time.sleep(0.1)

            else:
                self.market_encoder = Encoder().cuda()
                self.actor_critic = ActorCritic().cuda()
                try:
                    MEN_compressed_state_dict = self.server.get("market_encoder")
                    ACN_compressed_state_dict = self.server.get("actor_critic")

                    MEN_state_dict_buffer = pickle.loads(MEN_compressed_state_dict)
                    ACN_state_dict_buffer = pickle.loads(ACN_compressed_state_dict)

                    MEN_state_dict_buffer.seek(0)
                    ACN_state_dict_buffer.seek(0)

                    self.market_encoder.load_state_dict(torch.load(MEN_state_dict_buffer, map_location='cuda'))
                    self.actor_critic.load_state_dict(torch.load(ACN_state_dict_buffer, map_location='cuda'))
                    break
                except Exception:
                    print("Failed to load models")
                    time.sleep(0.1)

        self.market_encoder.eval()
        self.actor_critic.eval()

        if test:
            n = 0
            for network in [self.market_encoder, self.actor_critic]:
                for param in network.parameters():
                    n += np.prod(param.size())
            print("number of parameters:", n)

        self.time_states = []
        self.exp_time_states = []
        self.exp_percents_in = []
        self.exp_trades_open = []
        self.exp_spreads = []
        self.exp_mus = []
        self.exp_actions = []
        self.exp_rewards = []

        # self.action_last_step = False
        self.last_bar_date = -1

        self.total_rewards = 0
        self.reward = 0

        self.window = 60 * 6

        self.start = start
        self.trajectory_steps = int(self.server.get("trajectory_steps").decode("utf-8"))

        self.i_step = 0
        self.steps_since_push = 0
        self.n_experiences = 0
        self.steps_between_experiences = self.trajectory_steps

        self.test = test
        if self.test:
            self.zeus = Zeus(instrument, granularity, margin=1)
            self.tradeable_percentage = 1
            self.n_steps_left = self.window + (1440 * 5)
            self.n_total_experiences = 0

            self.actor_temp = 1

            self.trade_steps = []
            self.rewards = []
        else:
            self.zeus = Zeus(instrument, granularity, margin=1)
            self.tradeable_percentage = 1
            self.n_total_experiences = 100
            self.n_steps_left = self.window + (self.steps_between_experiences + self.trajectory_steps) * self.n_total_experiences

            actor_base_temp = float(self.server.get("actor_temp").decode("utf-8"))
            self.actor_temp = np.random.exponential(actor_base_temp / np.log(2))

        self.trade_percent = self.tradeable_percentage / 100
        self.trade_units = 0

        self.long_trades = []
        self.short_trades = []

        self.pos_trades = []
        self.n_closed_early = 0
        self.n_tp = 0
        self.neg_trades = []

        self.plot = self.test and False
        if self.plot:
            self.all_times = []
            self.long_times = []
            self.short_times = []
            self.long_bars = []
            self.short_bars = []
            self.all_bars = []

    def add_bar(self, bar):
        time_state = [[[bar.open, bar.high, bar.low, bar.close]]]

        if (self.test and self.n_steps_left == 0) or (not self.test and bar.date > 1546300800) or (not self.test and self.n_experiences == self.n_total_experiences):
            self.quit()

        if self.i_step == 0:
            self.trade_units = self.zeus.units_available()

        if len(self.time_states) == 0 or bar.date != self.last_bar_date:
            self.time_states.append(time_state)
            self.last_bar_date = bar.date
        else:
            return

        if len(self.time_states) == self.window + 1:
            del self.time_states[0]

        if len(self.time_states) == self.window:
            if self.plot:
                self.all_times.append(self.i_step)
                self.all_bars.append(bar.close)

            test_spread_amount = float(self.server.get("spread_amount").decode("utf-8"))
            worker_spread_amount = float(self.server.get("spread_amount").decode("utf-8"))

            if self.test:
                spread_amount = test_spread_amount
            else:
                spread_amount = worker_spread_amount

            # process short trades
            completed_trades = set()
            for i, trade in enumerate(self.short_trades):
                trade_open = trade['open'] - (trade['spread'] * spread_amount)

                if trade_open - bar.low > trade['tp']:
                    self.reward += trade['tp']
                    self.pos_trades.append(trade['tp'])
                    self.n_tp += 1
                    completed_trades.add(i)
                if bar.high - trade_open > trade['sl']:
                    self.reward -= trade['sl']
                    self.neg_trades.append(-trade['sl'])
                    completed_trades.add(i)

            completed_trades = sorted(list(completed_trades))
            completed_trades.reverse()
            for i in completed_trades:
                if self.test:
                    self.trade_steps.append(self.i_step - self.short_trades[i]['step'])
                del self.short_trades[i]

            # process long trades
            completed_trades = set()
            for i, trade in enumerate(self.long_trades):
                trade_open = trade['open'] + (trade['spread'] * spread_amount)

                if bar.high - trade_open > trade['tp']:
                    self.reward += trade['tp']
                    self.pos_trades.append(trade['tp'])
                    self.n_tp += 1
                    completed_trades.add(i)
                if trade_open - bar.low > trade['sl']:
                    self.reward -= trade['sl']
                    self.neg_trades.append(-trade['sl'])
                    completed_trades.add(i)

            completed_trades = sorted(list(completed_trades))
            completed_trades.reverse()
            for i in completed_trades:
                if self.test:
                    self.trade_steps.append(self.i_step - self.long_trades[i]['step'])
                del self.long_trades[i]

            self.reward *= 1000
            self.total_rewards += self.reward

            if self.test:
                self.rewards.append(self.reward)

            percent_in = -1 * len(self.short_trades) + 1 * len(self.long_trades)

            self.exp_rewards.append(self.reward)

            if len(self.exp_rewards) == self.trajectory_steps:
                del self.exp_rewards[0]

            self.reward = 0

            trade_open = bar.close
            if len(self.short_trades) > 0:
                trade_open = self.short_trades[0]["open"]
            elif len(self.long_trades) > 0:
                trade_open = self.long_trades[0]["open"]

            five_min_bars = []
            i = 0
            five_min_bar_high = float('-inf')
            five_min_bar_low = float('inf')
            five_min_bar = []
            for time_state in self.time_states[:-60]:
                time_state = time_state[0][0]
                if i == 0:
                    five_min_bar.append(time_state[0])
                if time_state[1] > five_min_bar_high:
                    five_min_bar_high = time_state[1]
                if time_state[2] < five_min_bar_low:
                    five_min_bar_low = time_state[2]
                i += 1
                if i % 5 == 0:
                    five_min_bar.append(five_min_bar_high)
                    five_min_bar.append(five_min_bar_low)
                    five_min_bar.append(time_state[3])
                    five_min_bars.append(five_min_bar)
                    five_min_bar = []
                    i = 0
                    five_min_bar_high = float('-inf')
                    five_min_bar_low = float('inf')

            five_min_time_states = torch.Tensor(five_min_bars).view(1, 60, 4)
            one_min_time_states = torch.Tensor(self.time_states[-60:]).view(1, 60, 4)
            input_time_states = torch.cat([five_min_time_states, one_min_time_states], dim=1)
            # input_time_states = torch.Tensor(self.time_states[-self.window:]).view(1, self.window, networks.D_BAR)
            assert torch.isnan(input_time_states).sum() == 0

            market_encoding = self.market_encoder(input_time_states, torch.Tensor([bar.spread]), torch.Tensor([percent_in]), torch.Tensor([trade_open]))
            policy, value = self.actor_critic(market_encoding, temp=self.actor_temp)

            if self.test and False:
                action = np.random.randint(0, 3)
                # action = torch.multinomial(policy, 1).item()
                # action = torch.argmax(policy, 1).item()
            else:
                action = torch.multinomial(policy, 1).item()

            if self.plot:
                if action == 0:
                    self.short_times.append(self.i_step)
                    self.short_bars.append(bar.close)
                elif action == 1:
                    self.long_times.append(self.i_step)
                    self.long_bars.append(bar.close)

            mu = policy[0, action].item()

            # self.action_last_step = True

            self.exp_time_states.append(input_time_states.tolist())
            self.exp_percents_in.append(percent_in)
            self.exp_trades_open.append(trade_open)
            self.exp_spreads.append(bar.spread)

            if not self.test and len(self.exp_time_states) == self.trajectory_steps + 1:
                del self.exp_time_states[0]
                del self.exp_percents_in[0]
                del self.exp_trades_open[0]
                del self.exp_spreads[0]

            # process action
            open = bar.close
            spread = bar.spread
            step = self.i_step
            if self.test and False:
                tp = 1000 / 10000 - (spread * spread_amount)
                sl = 1000 / 10000 + (spread * spread_amount)
            else:
                tp = 1000 / 10000 - (spread * spread_amount)
                sl = 1000 / 10000 + (spread * spread_amount)

            new_trade = {'open':open, 'spread':spread, 'step':step, 'tp':tp, 'sl':sl}

            max_trades = 1

            if action == 0:
                if len(self.long_trades) > 0:
                    trade = self.long_trades[0]
                    trade_open = trade['open'] + (trade['spread'] * spread_amount)
                    self.reward += bar.close - trade_open
                    if (bar.close - trade_open) > 0:
                        self.pos_trades.append(bar.close - trade_open)
                        self.n_closed_early += 1
                    else:
                        self.neg_trades.append(bar.close - trade_open)
                    del self.long_trades[0]

                if len(self.short_trades) < max_trades and len(self.long_trades) == 0:
                    self.short_trades.append(new_trade)

            elif action == 1:
                if len(self.short_trades) > 0:
                    trade = self.short_trades[0]
                    trade_open = trade['open'] - (trade['spread'] * spread_amount)
                    self.reward += trade_open - bar.close
                    if (trade_open - bar.close) > 0:
                        self.pos_trades.append(trade_open - bar.close)
                        self.n_closed_early += 1
                    else:
                        self.neg_trades.append(trade_open - bar.close)
                    del self.short_trades[0]

                if len(self.long_trades) < max_trades and len(self.short_trades) == 0:
                    self.long_trades.append(new_trade)

            elif action == 2:
                while len(self.short_trades) > 0:
                    trade = self.short_trades[0]
                    trade_open = trade['open'] - (trade['spread'] * spread_amount)
                    self.reward += trade_open - bar.close
                    if (trade_open - bar.close) > 0:
                        self.pos_trades.append(trade_open - bar.close)
                        self.n_closed_early += 1
                    else:
                        self.neg_trades.append(trade_open - bar.close)
                    del self.short_trades[0]

                while len(self.long_trades) > 0:
                    trade = self.long_trades[0]
                    trade_open = trade['open'] + (trade['spread'] * spread_amount)
                    self.reward += bar.close - trade_open
                    if (bar.close - trade_open) > 0:
                        self.pos_trades.append(bar.close - trade_open)
                        self.n_closed_early += 1
                    else:
                        self.neg_trades.append(bar.close - trade_open)
                    del self.long_trades[0]

            if self.test:
                reward_tau = float(self.server.get("test_reward_tau").decode("utf-8"))
                reward_ema = self.server.get("test_reward_ema")
                reward_emsd = self.server.get("test_reward_emsd")
                if reward_ema != None:
                    reward_ema = float(reward_ema.decode("utf-8"))
                    reward_emsd = float(reward_emsd.decode("utf-8"))
                else:
                    reward_ema = 0
                    reward_emsd = 0

                p_pos = (np.array(self.rewards) > 0).sum() / (np.array(self.rewards) != 0).sum()
                print("n trades:", len(self.pos_trades + self.neg_trades))
                print("n tp, n closed early:", self.n_tp, self.n_closed_early)
                print("p_pos:", p_pos)
                print("spread mean:", np.mean(self.exp_spreads) * 10000)
                print("pos mean:", np.mean(self.pos_trades) * 10000)
                print("neg mean:", np.mean(self.neg_trades) * 10000)
                print("sum all:", np.sum(self.pos_trades + self.neg_trades) * 10000)
                print("with spread at 100%:", np.sum(np.array(self.pos_trades + self.neg_trades) - np.mean(self.exp_spreads)) * 10000)
                print('-----------------------------------------------------------------------------')
                print("step: {s} \
                \naction: {a} \
                \ndirection: {dir} \
                \npolicy: {p} \
                \nvalue: {v} \
                \ntotal rewards: {t_r} \
                \nreward_ema: {ema} \
                \nreward_emsd: {emsd} \
                \n1/tau: {tau} \
                \nspread amount: {sa} \
                \nbar close: {close} \
                \nwindow std: {std} \
                \ninstrument: {ins} \
                \nstart: {start} \n".format(s=self.i_step,
                                        a=action,
                                        dir=percent_in,
                                        p=[round(policy_, 5) for policy_ in policy[0].tolist()],
                                        v=round(value.item(), 5),
                                        t_r=self.total_rewards,
                                        ema=round(reward_ema, 5),
                                        emsd=round(reward_emsd, 5),
                                        tau=round(1/reward_tau, 5),
                                        sa=round(spread_amount, 5),
                                        std=round(np.std([ts[0][0][3] for ts in self.time_states[-self.window:]]), 5),
                                        close=bar.close,
                                        ins=self.instrument,
                                        start=self.start))

                print('-----------------------------------------------------------------------------')
                print('*****************************************************************************')
                # if self.i_step % 1000 == 0:
                #     try:
                #         MEN_compressed_state_dict = self.server.get("market_encoder")
                #         ACN_compressed_state_dict = self.server.get("actor_critic")
                #
                #         MEN_state_dict_buffer = pickle.loads(MEN_compressed_state_dict)
                #         ACN_state_dict_buffer = pickle.loads(ACN_compressed_state_dict)
                #
                #         MEN_state_dict_buffer.seek(0)
                #         ACN_state_dict_buffer.seek(0)
                #
                #         self.market_encoder.load_state_dict(torch.load(MEN_state_dict_buffer, map_location='cuda'))
                #         self.actor_critic.load_state_dict(torch.load(ACN_state_dict_buffer, map_location='cuda'))
                #     except Exception as e:
                #         print("Failed to load models")

            if (self.steps_since_push == self.steps_between_experiences) and (not self.test) and len(self.exp_time_states) == self.trajectory_steps:
                experience = Experience(
                time_states=self.exp_time_states,
                percents_in=self.exp_percents_in,
                trades_open=self.exp_trades_open,
                spreads=self.exp_spreads,
                mus=self.exp_mus,
                place_actions=self.exp_actions,
                rewards=self.exp_rewards
                )

                experience = msgpack.packb(experience, use_bin_type=True)
                # self.add_to_replay_buffer(experience)
                n_experiences = self.server.llen("experience")
                if n_experiences > 0:
                    try:
                        loc = np.random.randint(0, n_experiences)
                        ref = self.server.lindex("experience", loc)
                        self.server.linsert("experience", "before", ref, experience)
                    except redis.exceptions.DataError:
                        self.server.lpush("experience", experience)
                else:
                    self.server.lpush("experience", experience)

                self.n_experiences += 1
                self.steps_since_push = 1

                self.exp_time_states = []
                self.exp_percents_in = []
                self.exp_trades_open = []
                self.exp_spreads = []
                self.exp_mus = []
                self.exp_actions = []
                self.exp_rewards = []
                # self.action_last_step = False

            else:
                self.steps_since_push += 1
                # self.action_last_step = True

                self.exp_actions.append(action)
                self.exp_mus.append(mu)
                if len(self.exp_actions) == self.trajectory_steps:
                    del self.exp_actions[0]
                    del self.exp_mus[0]

            self.i_step += 1

        self.n_steps_left -= 1
        # torch.cuda.empty_cache()
        self.t_final_prev = time.time()

    def run(self):
        self.t0 = time.time()

        n = 0
        start = self.start
        while (self.test and self.n_steps_left > 0) or (not self.test and self.n_experiences < self.n_total_experiences):
            if self.test:
                n_seconds = min(self.n_steps_left, 7200) * 60
            else:
                n_seconds = (self.n_total_experiences - self.n_experiences) * (self.steps_between_experiences + self.trajectory_steps) * 10 * 60
            if self.granularity == "M5":
                n_seconds *= 5
            if self.test:
                print("starting new stream. n minutes left:", n_seconds // 60)
            self.zeus.stream_range(start, min(start + n_seconds, int(time.time())), self.add_bar)
            start += n_seconds
            n += 1

        self.quit()

    def quit(self):
        print(("time: {time}, "
                "rewards: {reward}, "
                "temp: {actor_temp}, "
                "n exp: {n_experiences}, "
                "instr: {instrument}, "
                "start: {start}").format(
                    time=round(time.time()-self.t0, 2),
                    reward=self.total_rewards,
                    actor_temp=round(self.actor_temp, 3),
                    n_experiences=self.n_experiences,
                    instrument=self.instrument,
                    start=self.start
                )
        )

        if self.test:

            if self.plot:
                import matplotlib.pyplot as plt
                plt.plot(self.all_times, self.all_bars)
                plt.scatter(np.array(self.long_times), self.long_bars, c='g', alpha=1)
                plt.scatter(np.array(self.short_times), self.short_bars, c='r', alpha=1)
                plt.show()

            reward_tau = float(self.server.get("test_reward_tau").decode("utf-8"))
            reward_ema = float(self.server.get("test_reward_ema").decode("utf-8"))
            reward_emsd = float(self.server.get("test_reward_emsd").decode("utf-8"))

            delta = self.total_rewards - reward_ema
            new_reward_ema = reward_ema + reward_tau * delta
            new_reward_emsd = math.sqrt((1 - reward_tau) * (reward_emsd**2 + reward_tau * (delta**2)))
            new_reward_tau = max(1 / ((1 / reward_tau) + 1), 0.01)
            # spread_amount = float(self.server.get("spread_amount").decode("utf-8"))
            # new_spread_amount = min(1, spread_amount + 0.25)
            #
            # if new_reward_tau == 0.1 and new_reward_ema > 5 and spread_amount < 1:
            #     self.server.set("spread_amount", new_spread_amount)
            #     new_reward_ema = 0
            #     new_reward_emsd = 0
            #     new_reward_tau = 1

            self.server.set("test_reward_ema", new_reward_ema)
            self.server.set("test_reward_emsd", new_reward_emsd)
            self.server.set("test_reward_tau", new_reward_tau)


        quit()

    def add_to_replay_buffer(self, compressed_experience):
        # try:
        #     loc = np.random.randint(0, replay_size) if replay_size > 0 else 0
        #     ref = self.server.lindex("replay_buffer", loc)
        #     self.server.linsert("replay_buffer", "before", ref, compressed_experience)
        # except redis.exceptions.DataError:
        self.server.lpush("replay_buffer", compressed_experience)

        max_replay_size = int(self.server.get("replay_buffer_size").decode("utf-8"))
        replay_size = self.server.llen("replay_buffer")
        while replay_size - 1 > max_replay_size:
            replay_size = self.server.llen("replay_buffer")
            try:
                loc = replay_size - 1
                ref = self.server.lindex("replay_buffer", loc)
                self.server.lrem("replay_buffer", -1, ref)
            except Exception as e:
                pass
Пример #15
0
class Worker(object):
    def __init__(self, instrument, granularity, server_host, start,
                 max_bar_time, models_loc):
        self.server = redis.Redis(server_host)
        self.zeus = Zeus(instrument, granularity, margin=1)
        self.models_loc = models_loc

        self.window = networks.WINDOW
        self.start = start
        self.max_bar_time = max_bar_time

        self.time_states = []
        self.last_time = None

        self.generator = Generator().cuda()
        try:
            self.generator.load_state_dict(
                torch.load(self.models_loc + 'generator.pt',
                           map_location='cuda'))
        except FileNotFoundError as e:
            print("model load failed", e)
            self.generator = Generator().cuda()

        self.generator.eval()

        n = 0
        for name, param in self.generator.named_parameters():
            # print(np.prod(param.size()), name)
            n += np.prod(param.size())
        print("generator parameters:", n)

        # for name, param in self.generator.named_parameters():
        #     print(param.std(), name)

        self.n_future_samples = 100
        self.n_steps_future = 10

        self.plot = 0

        self.step = 0

        self.last_price = None
        self.last_action = None
        self.steps_since_trade = 0
        self.n_correct = 0
        self.n_trades = 0
        self.n = 0

        self.t0 = 0

    def add_bar(self, bar):
        t_ = time.time()

        if bar.date > self.max_bar_time:
            print("out of bars")
            print("elapsed time: {time}".format(time=time.time() - self.t0))
            quit()

        time_state = [bar.open, bar.high, bar.low, bar.close]

        if bar.date != self.last_time:
            self.time_states.append(time_state)
            self.n += 1

        if len(self.time_states) > self.window + self.n_steps_future:
            del self.time_states[0]

            if bar.date != self.last_time:
                input_time_states = []
                for time_state in self.time_states:
                    input_time_states.append(
                        torch.Tensor(time_state).view(1, 1, networks.D_BAR))
                if self.plot:
                    time_state_values = torch.cat(
                        input_time_states, dim=1)[0, :,
                                                  3].cpu().detach().numpy()
                    plt.plot(np.arange(0, self.window),
                             time_state_values[:self.window], 'b-')
                    plt.plot(
                        np.arange(self.window - 1,
                                  self.window + self.n_steps_future),
                        time_state_values[self.window - 1:], 'g-')

                input_time_states_original = []
                for i_time_state in range(self.window):
                    input_time_states_original.append(
                        torch.Tensor(self.time_states[i_time_state]).view(
                            1, 1, D_BAR))
                input_time_states_original = torch.cat(
                    input_time_states_original, dim=1)

                generation = self.generator(
                    input_time_states_original.repeat(self.n_future_samples, 1,
                                                      1))

                if self.plot:
                    time_state_values = torch.cat(
                        [
                            input_time_states_original[0, -1, 3].view(
                                1, 1, 1).repeat(self.n_future_samples, 1, 1),
                            generation
                        ],
                        dim=1).cpu().detach().numpy()

                    x = np.arange(self.window - 1,
                                  self.window + self.n_steps_future).reshape(
                                      1, -1).repeat(self.n_future_samples,
                                                    axis=0)
                    y = time_state_values

                    x = x.reshape(self.n_future_samples,
                                  self.n_steps_future + 1).T
                    y = y.reshape(self.n_future_samples,
                                  self.n_steps_future + 1).T

                    if self.n_future_samples == 1:
                        plt.plot(x, y, 'y-', alpha=1)
                    else:
                        plt.plot(x, y, 'y-', alpha=0.1)

                predicted_future = generation[:, -1].mean().item()
                actual_future = self.time_states[-1][3]
                original = input_time_states[self.window - 1][0, 0, 3].item()

                input_mean = input_time_states_original.mean().item()
                input_std = input_time_states_original.std().item()
                plt.plot(np.arange(0, self.window + self.n_steps_future),
                         np.zeros(self.window + self.n_steps_future) +
                         input_mean,
                         'r',
                         alpha=0.1)
                plt.plot(np.arange(0, self.window + self.n_steps_future),
                         np.zeros(self.window + self.n_steps_future) +
                         original + (0.25 * input_std),
                         'y',
                         alpha=0.1)
                plt.plot(np.arange(0, self.window + self.n_steps_future),
                         np.zeros(self.window + self.n_steps_future) +
                         original - (0.25 * input_std),
                         'y',
                         alpha=0.1)

                # my_pred = input("b/s/h: ")
                # if (my_pred == 'b' and actual_future > original) or (my_pred == 's' and actual_future < original):
                #     self.n_correct += 1
                # if my_pred == 'b' or my_pred == 's':
                #     self.n_trades += 1

                # n_greater = (generation[:, -1] > original).sum().item()
                # print("number greater than original:", n_greater)
                # threshold = 90
                # if n_greater > threshold or n_greater < (100 - threshold):
                #     self.n_trades += 1
                #     if (n_greater > threshold and actual_future > original) or (n_greater < (100 - threshold) and actual_future < original):
                #         self.n_correct += 1

                if (predicted_future > original and actual_future > original
                    ) or (predicted_future < original
                          and actual_future < original):
                    self.n_correct += 1
                self.n_trades += 1

                print(
                    "trade: {trade}, time: {time}, actual change: {actual}, predicted change: {pred}, pred off mean: {pom}, accuracy: {acc}"
                    .format(trade=self.n_trades,
                            time=round(time.time() - t_, 5),
                            actual=round(
                                (actual_future - original) /
                                input_time_states_original.std().item(), 3),
                            pred=round((predicted_future - original) /
                                       input_time_states_original.std().item(),
                                       3),
                            pom=round((predicted_future - input_mean) /
                                      input_time_states_original.std().item(),
                                      5),
                            acc=round(self.n_correct / (self.n_trades + 1e-9),
                                      7)))
                print()

                if self.plot:
                    plt.show()

                # del self.time_states[:self.n_steps_future]
                self.time_states = []

        self.last_time = bar.date
        self.step += 1
        self.steps_since_trade += 1

    def run(self):
        self.t0 = time.time()
        with torch.no_grad():
            start = self.start
            while True:
                n_seconds = 60 * 1440 * 50
                self.zeus.stream_range(start, start + n_seconds, self.add_bar)
                start += n_seconds

        print("time: {time}".format(time=time.time() - t0))
Пример #16
0
    def __init__(self, name, instrument, granularity, server_host, start, test=False):

        if not test:
            torch.set_default_tensor_type(torch.FloatTensor)
        else:
            torch.set_default_tensor_type(torch.cuda.FloatTensor)

        self.name = name
        self.instrument = instrument
        self.granularity = granularity
        self.server = redis.Redis(server_host)

        while True:
            if not test:
                self.market_encoder = Encoder().cpu()
                self.actor_critic = ActorCritic().cpu()

                try:
                    MEN_compressed_state_dict = self.server.get("market_encoder")
                    ACN_compressed_state_dict = self.server.get("actor_critic")

                    MEN_state_dict_buffer = pickle.loads(MEN_compressed_state_dict)
                    ACN_state_dict_buffer = pickle.loads(ACN_compressed_state_dict)

                    MEN_state_dict_buffer.seek(0)
                    ACN_state_dict_buffer.seek(0)

                    self.market_encoder.load_state_dict(torch.load(MEN_state_dict_buffer, map_location='cpu'))
                    self.actor_critic.load_state_dict(torch.load(ACN_state_dict_buffer, map_location='cpu'))

                    break
                except Exception as e:
                    print("Failed to load models")
                    time.sleep(0.1)

            else:
                self.market_encoder = Encoder().cuda()
                self.actor_critic = ActorCritic().cuda()
                try:
                    MEN_compressed_state_dict = self.server.get("market_encoder")
                    ACN_compressed_state_dict = self.server.get("actor_critic")

                    MEN_state_dict_buffer = pickle.loads(MEN_compressed_state_dict)
                    ACN_state_dict_buffer = pickle.loads(ACN_compressed_state_dict)

                    MEN_state_dict_buffer.seek(0)
                    ACN_state_dict_buffer.seek(0)

                    self.market_encoder.load_state_dict(torch.load(MEN_state_dict_buffer, map_location='cuda'))
                    self.actor_critic.load_state_dict(torch.load(ACN_state_dict_buffer, map_location='cuda'))
                    break
                except Exception:
                    print("Failed to load models")
                    time.sleep(0.1)

        self.market_encoder.eval()
        self.actor_critic.eval()

        if test:
            n = 0
            for network in [self.market_encoder, self.actor_critic]:
                for param in network.parameters():
                    n += np.prod(param.size())
            print("number of parameters:", n)

        self.time_states = []
        self.exp_time_states = []
        self.exp_percents_in = []
        self.exp_trades_open = []
        self.exp_spreads = []
        self.exp_mus = []
        self.exp_actions = []
        self.exp_rewards = []

        # self.action_last_step = False
        self.last_bar_date = -1

        self.total_rewards = 0
        self.reward = 0

        self.window = 60 * 6

        self.start = start
        self.trajectory_steps = int(self.server.get("trajectory_steps").decode("utf-8"))

        self.i_step = 0
        self.steps_since_push = 0
        self.n_experiences = 0
        self.steps_between_experiences = self.trajectory_steps

        self.test = test
        if self.test:
            self.zeus = Zeus(instrument, granularity, margin=1)
            self.tradeable_percentage = 1
            self.n_steps_left = self.window + (1440 * 5)
            self.n_total_experiences = 0

            self.actor_temp = 1

            self.trade_steps = []
            self.rewards = []
        else:
            self.zeus = Zeus(instrument, granularity, margin=1)
            self.tradeable_percentage = 1
            self.n_total_experiences = 100
            self.n_steps_left = self.window + (self.steps_between_experiences + self.trajectory_steps) * self.n_total_experiences

            actor_base_temp = float(self.server.get("actor_temp").decode("utf-8"))
            self.actor_temp = np.random.exponential(actor_base_temp / np.log(2))

        self.trade_percent = self.tradeable_percentage / 100
        self.trade_units = 0

        self.long_trades = []
        self.short_trades = []

        self.pos_trades = []
        self.n_closed_early = 0
        self.n_tp = 0
        self.neg_trades = []

        self.plot = self.test and False
        if self.plot:
            self.all_times = []
            self.long_times = []
            self.short_times = []
            self.long_bars = []
            self.short_bars = []
            self.all_bars = []
Пример #17
0
class Worker(object):
    def __init__(self, instrument, granularity, server_host, start,
                 max_bar_time, models_loc):
        self.server = redis.Redis(server_host)
        self.zeus = Zeus(instrument, granularity, margin=1)
        self.models_loc = models_loc

        self.window = networks.WINDOW
        self.start = start
        self.max_bar_time = max_bar_time

        self.time_states = []
        self.last_time = None

        self.network = Network().cuda()
        try:
            self.network.load_state_dict(
                torch.load(self.models_loc + 'network.pt',
                           map_location='cuda'))
        except FileNotFoundError as e:
            print("model load failed", e)
            self.network = Network().cuda()

        self.network.eval()

        n = 0
        for name, param in self.network.named_parameters():
            n += np.prod(param.size())
        print("network parameters:", n)

        self.n_future_samples = 1
        self.n_steps_future = 10

        self.plot = 0

        self.step = 0

        self.last_price = None
        self.last_action = None
        self.steps_since_trade = 0
        self.n_correct = 0
        self.n_trades = 0
        self.n = 0

        self.t0 = 0

    def add_bar(self, bar):
        t_ = time.time()

        if bar.date > self.max_bar_time:
            print("out of bars")
            print("elapsed time: {time}".format(time=time.time() - self.t0))
            quit()

        time_state = [bar.open, bar.high, bar.low, bar.close]

        if bar.date != self.last_time:
            self.time_states.append(time_state)
            self.n += 1

        if len(self.time_states) > self.window + self.n_steps_future:
            del self.time_states[0]

            if bar.date != self.last_time:
                input_time_states = []
                for time_state in self.time_states:
                    input_time_states.append(
                        torch.Tensor(time_state).view(1, 1, networks.D_BAR))
                if self.plot:
                    time_state_values = torch.cat(
                        input_time_states, dim=1)[0, :,
                                                  3].cpu().detach().numpy()
                    plt.plot(np.arange(0, self.window),
                             time_state_values[:self.window], 'b-')
                    plt.plot(
                        np.arange(self.window - 1,
                                  self.window + self.n_steps_future),
                        time_state_values[self.window - 1:], 'g-')

                input_time_states_original = []
                for i_time_state in range(self.window):
                    input_time_states_original.append(
                        torch.Tensor(self.time_states[i_time_state]).view(
                            1, 1, D_BAR))
                input_time_states_original = torch.cat(
                    input_time_states_original, dim=1)

                prediction, _, mean, std = self.network(
                    input_time_states_original)

                original = input_time_states[self.window - 1][0, 0, 3].item()

                print(prediction)
                action = torch.argmax(prediction)
                confidence = 0.75
                if action != 1 and prediction.max() > confidence:
                    self.n_trades += 1
                    future = self.time_states[-1][3]
                    if (action == 0 and
                        (future > original)) or (action == 2 and
                                                 (future < original)):
                        self.n_correct += 1

                if self.plot:
                    plt.plot(np.arange(0, self.window + self.n_steps_future),
                             np.zeros(self.window + self.n_steps_future) +
                             mean.item(),
                             'r',
                             alpha=0.1)
                    plt.plot(np.arange(0, self.window + self.n_steps_future),
                             np.zeros(self.window + self.n_steps_future) +
                             original + (0.25 * std.item()),
                             'y',
                             alpha=0.1)
                    plt.plot(np.arange(0, self.window + self.n_steps_future),
                             np.zeros(self.window + self.n_steps_future) +
                             original - (0.25 * std.item()),
                             'y',
                             alpha=0.1)

                print("trade: {trade}, time: {time}, accuracy: {acc}".format(
                    trade=self.n_trades,
                    time=round(time.time() - t_, 5),
                    acc=round(self.n_correct / (self.n_trades + 1e-9), 7)))
                print()

                if self.plot:
                    plt.show()

                del self.time_states[:self.n_steps_future]
                # self.time_states = []

        self.last_time = bar.date
        self.step += 1
        self.steps_since_trade += 1

    def run(self):
        self.t0 = time.time()
        with torch.no_grad():
            start = self.start
            while True:
                n_seconds = 60 * 1440 * 10
                self.zeus.stream_range(start, start + n_seconds, self.add_bar)
                start += n_seconds

        print("time: {time}".format(time=time.time() - t0))