Пример #1
0
class Beta(CustomFactor):
    outputs = ['beta', 'residual_var']
    inputs = [DailyReturns(), DailyReturns()[symbol('SPY')]]
    window_length = 252
    params = ('standardize',)

    def compute(self, today, assets, out, assets_returns, market_returns, standardize):
        allowed_missing_percentage = 0.25
        allowed_missing_count = int(allowed_missing_percentage * self.window_length)
        (out.beta, out.residual_var) = beta_residual(assets_returns, market_returns, allowed_missing_count, standardize)
Пример #2
0
class MarketDispersion(CustomFactor):
    inputs = [DailyReturns()]
    window_length = 1
    window_safe = True

    def compute(self, today, assets, out, returns):
        # returns are days in rows, assets across columns
        out[:] = np.sqrt(np.nanmean((returns - np.nanmean(returns))**2))
Пример #3
0
class MarketVolatility(CustomFactor):
    inputs = [DailyReturns()]
    window_length = 1
    window_safe = True

    def compute(self, today, assets, out, returns):
        mkt_returns = np.nanmean(returns, axis=1)
        out[:] = np.sqrt(260. * np.nanmean(
            (mkt_returns - np.nanmean(mkt_returns))**2))
class MarketVolatility(CustomFactor):
    inputs = [DailyReturns()]
    window_length = 1  # We'll want to set this in the constructor when creating the object.
    window_safe = True

    def compute(self, today, assets, out, returns):
        DAILY_TO_ANNUAL_SCALAR = 252.  # 252 trading days in a year
        """
        For each row (each row represents one day of returns), 
        calculate the average of the cross-section of stock returns
        So that market_returns has one value for each day in the window_length
        So choose the appropriate axis (please see hints above)
        """
        mkt_returns = np.nanmean(returns, axis=1)
        """ 
        Calculate the mean of market returns
        """
        mkt_returns_mu = np.nanmean(mkt_returns)
        """
        Calculate the standard deviation of the market returns, then annualize them.
        """
        out[:] = np.sqrt(DAILY_TO_ANNUAL_SCALAR * np.nanmean(
            (mkt_returns - mkt_returns_mu)**2))
Пример #5
0
    def test_daily_returns_is_special_case_of_returns(self):

        self.check_equivalent_terms({
            'daily': DailyReturns(),
            'manual_daily': Returns(window_length=2),
        })