Пример #1
0
    def _get_embed_ncf(self):
        user_max = self._config["user_max"]
        ncf = NeuralCF(user_count=user_max,
                       item_count=self._config["movie_max"],
                       class_num=self._config["rate_dim"],
                       hidden_layers=[20, 10],
                       include_mf=False)
        loaded = ncf.load_model(self._config["ncf_model_path"])
        user_embed = loaded.get_weights()[0]
        item_embed = loaded.get_weights()[1]

        user_dict = {}
        for i in range(1, self._config["user_max"] + 1):
            user_dict[i] = user_embed[i][:]

        item_dict = {}
        for i in range(1, self._config["movie_max"] + 1):
            item_dict[i] = item_embed[i][:]
        return (user_dict, item_dict)
Пример #2
0
ncf = NeuralCF(user_count=max_user_id,
               item_count=max_movie_id,
               class_num=5,
               hidden_layers=[20, 10],
               include_mf = False)

ncf.compile(optimizer= "adam",
            loss= "sparse_categorical_crossentropy",
            metrics=['accuracy'])

ncf.fit(train_rdd,
        nb_epoch= 10,
        batch_size= 8000,
        validation_data=val_rdd)

ncf.save_model("../save_model/movie_ncf.zoomodel", over_write=True)
#
weights = ncf.get_weights()
# print(weights)
print(len(weights))

for i, weight in enumerate(weights):
    print(i)
    print(weight.shape)
#
loaded = ncf.load_model("../save_model/movie_ncf.zoomodel")
user_embed = loaded.get_weights()[0]
print(user_embed.shape)
#
item_embed = loaded.get_weights()[1]
print(item_embed.shape)