def pass_backward(self, grad): _, time_steps, _ = grad.shape next_grad = np.zeros_like(grad) if self.is_trainable: dW_input = np.zeros_like(self.W_input) dW_recur = np.zeros_like(self.W_recur) dW_output = np.zeros_like(self.W_output) db_input = np.zeros_like(self.b_input) db_output = np.zeros_like(self.b_output) for t in np.arange(time_steps)[::-1]: # reversed dW_output += np.dot(grad[:, t].T, self.states[:, t]) db_output += np.sum(grad[:, t], axis=0) dstate = np.dot(grad[:, t], self.W_output) * activate( self.activation).backward(self.state_inputs[:, t]) next_grad[:, t] = np.dot(dstate, self.W_input) for tt in np.arange(max(0, t - self.bptt_truncate), t + 1)[::-1]: # reversed dW_input += np.dot(dstate.T, self.inputs[:, tt]) dW_recur += np.dot(dstate.T, self.states[:, tt - 1]) db_input += np.sum(dstate, axis=0) dstate = np.dot(dstate, self.W_recur) * activate( self.activation).backward(self.state_inputs[:, tt - 1]) # optimize weights and bias self.W_input = optimizer(self.optimizer_kwargs).update( self.W_input, cg(dW_input)) self.W_output = optimizer(self.optimizer_kwargs).update( self.W_output, cg(dW_output)) self.W_recur = optimizer(self.optimizer_kwargs).update( self.W_recur, cg(dW_recur)) self.b_input = optimizer(self.optimizer_kwargs).update( self.b_input, cg(db_input)) self.b_output = optimizer(self.optimizer_kwargs).update( self.b_output, cg(db_output)) # endif self.is_trainable return next_grad
def pass_backward(self, grad): _, time_steps, _ = grad.shape dW_update = np.zeros_like(self.W_update) dW_reset = np.zeros_like(self.W_reset) dW_cell = np.zeros_like(self.W_cell) dW_final = np.zeros_like(self.W_final) db_update = np.zeros_like(self.b_update) db_reset = np.zeros_like(self.b_reset) db_cell = np.zeros_like(self.b_cell) db_final = np.zeros_like(self.b_final) dstates = np.zeros_like(self.states) dstate_a = np.zeros_like(self.states) dstate_b = np.zeros_like(self.states) dstate_c = np.zeros_like(self.states) dstates_next = np.zeros_like(self.states) dstates_prime = np.zeros_like(self.states) dz_cell = np.zeros_like(self.cell) dcell = np.zeros_like(self.cell) dz_reset = np.zeros_like(self.reset) dreset = np.zeros_like(self.reset) dz_update = np.zeros_like(self.update) dupdate = np.zeros_like(self.update) next_grad = np.zeros_like(grad) for t in np.arange(time_steps)[::-1]: # reversed dW_final += np.dot(self.states[:, t].T, grad[:, t]) db_final += np.sum(grad[:, t], axis=0) dstates[:, t] = np.dot(grad[:, t], self.W_final.T) dstates[:, t] += dstates_next[:, t] next_grad = np.dot(dstates, self.W_final) dcell[:, t] = self.update[:, t] * dstates[:, t] dstate_a[:, t] = (1. - self.update[:, t]) * dstates[:, t] dupdate[:, t] = self.cell[:, t] * dstates[:, t] - self.states[:, t - 1] * dstates[:, t] dcell[:, t] = activate(self.activation)._backward( self.cell[:, t]) * dcell[:, t] dW_cell += np.dot(self.z_tilde[:, t - 1].T, dcell[:, t]) db_cell += np.sum(dcell[:, t], axis=0) dz_cell = np.dot(dcell[:, t], self.W_cell.T) dstates_prime[:, t] = dz_cell[:, :self.h_units] dstate_b[:, t] = self.reset[:, t] * dstates_prime[:, t] dreset[:, t] = self.states[:, t - 1] * dstates_prime[:, t] dreset[:, t] = activate(self.gate_activation)._backward( self.reset[:, t]) * dreset[:, t] dW_reset += np.dot(self.z[:, t].T, dreset[:, t]) db_reset += np.sum(dreset[:, t], axis=0) dz_reset = np.dot(dreset[:, t], self.W_reset.T) dupdate[:, t] = activate(self.gate_activation)._backward( self.update[:, t]) * dupdate[:, t] dW_update += np.dot(self.z[:, t].T, dupdate[:, t]) db_update += np.sum(dupdate[:, t], axis=0) dz_update = np.dot(dupdate[:, t], self.W_update.T) dz = dz_reset + dz_update dstate_c[:, t] = dz[:, :self.h_units] dstates_next = dstate_a + dstate_b + dstate_c # optimize weights and bias self.W_final = optimizer(self.optimizer_kwargs)._update( self.W_final, cg(dW_final)) self.b_final = optimizer(self.optimizer_kwargs)._update( self.b_final, cg(db_final)) self.W_cell = optimizer(self.optimizer_kwargs)._update( self.W_cell, cg(dW_cell)) self.b_cell = optimizer(self.optimizer_kwargs)._update( self.b_cell, cg(db_cell)) self.W_reset = optimizer(self.optimizer_kwargs)._update( self.W_reset, cg(dW_reset)) self.b_reset = optimizer(self.optimizer_kwargs)._update( self.b_reset, cg(db_reset)) self.W_update = optimizer(self.optimizer_kwargs)._update( self.W_update, cg(dW_update)) self.b_update = optimizer(self.optimizer_kwargs)._update( self.b_update, cg(db_update)) return next_grad
def pass_backward(self, grad): _, time_steps, _ = grad.shape dW_forget = np.zeros_like(self.W_forget) dW_input = np.zeros_like(self.W_input) dW_output = np.zeros_like(self.W_output) dW_cell = np.zeros_like(self.W_cell) dW_final = np.zeros_like(self.W_final) db_forget = np.zeros_like(self.b_forget) db_input = np.zeros_like(self.b_input) db_output = np.zeros_like(self.b_output) db_cell = np.zeros_like(self.b_cell) db_final = np.zeros_like(self.b_final) dstates = np.zeros_like(self.states) dcell = np.zeros_like(self.cell) dcell_tilde = np.zeros_like(self.cell_tilde) dforget = np.zeros_like(self.forget) dinput = np.zeros_like(self.input) doutput = np.zeros_like(self.output) dcell_next = np.zeros_like(self.cell) dstates_next = np.zeros_like(self.states) next_grad = np.zeros_like(grad) for t in np.arange(time_steps)[::-1]: # reversed dW_final += np.dot(self.states[:, t].T, grad[:, t]) db_final += np.sum(grad[:, t], axis=0) dstates[:, t] = np.dot(grad[:, t], self.W_final.T) dstates[:, t] += dstates_next[:, t] next_grad = np.dot(dstates, self.W_final) doutput[:, t] = activate(self.activation)._forward( self.cell[:, t]) * dstates[:, t] doutput[:, t] = activate(self.gate_activation)._backward( self.output[:, t]) * doutput[:, t] dW_output += np.dot(self.z[:, t].T, doutput[:, t]) db_output += np.sum(doutput[:, t], axis=0) dcell[:, t] += self.output[:, t] * dstates[:, t] * activate( self.activation)._backward(self.cell[:, t]) dcell[:, t] += dcell_next[:, t] dcell_tilde[:, t] = dcell[:, t] * self.input[:, t] dcell_tilde[:, t] = dcell_tilde[:, t] * activate( self.activation)._backward(dcell_tilde[:, t]) dW_cell += np.dot(self.z[:, t].T, dcell[:, t]) db_cell += np.sum(dcell[:, t], axis=0) dinput[:, t] = self.cell_tilde[:, t] * dcell[:, t] dinput[:, t] = activate(self.gate_activation)._backward( self.input[:, t]) * dinput[:, t] dW_input += np.dot(self.z[:, t].T, dinput[:, t]) db_input += np.sum(dinput[:, t], axis=0) dforget[:, t] = self.cell[:, t - 1] * dcell[:, t] dforget[:, t] = activate(self.gate_activation)._backward( self.forget[:, t]) * dforget[:, t] dW_forget += np.dot(self.z[:, t].T, dforget[:, t]) db_forget += np.sum(dforget[:, t], axis=0) dz_forget = np.dot(dforget[:, t], self.W_forget.T) dz_input = np.dot(dinput[:, t], self.W_input.T) dz_output = np.dot(doutput[:, t], self.W_output.T) dz_cell = np.dot(dcell[:, t], self.W_cell.T) dz = dz_forget + dz_input + dz_output + dz_cell dstates_next[:, t] = dz[:, :self.h_units] dcell_next = self.forget * dcell # optimize weights and bias self.W_final = optimizer(self.optimizer_kwargs)._update( self.W_final, cg(dW_final)) self.b_final = optimizer(self.optimizer_kwargs)._update( self.b_final, cg(db_final)) self.W_forget = optimizer(self.optimizer_kwargs)._update( self.W_forget, cg(dW_forget)) self.b_forget = optimizer(self.optimizer_kwargs)._update( self.b_forget, cg(db_forget)) self.W_input = optimizer(self.optimizer_kwargs)._update( self.W_input, cg(dW_input)) self.b_input = optimizer(self.optimizer_kwargs)._update( self.b_input, cg(db_input)) self.W_output = optimizer(self.optimizer_kwargs)._update( self.W_output, cg(dW_output)) self.b_output = optimizer(self.optimizer_kwargs)._update( self.b_output, cg(db_output)) self.W_cell = optimizer(self.optimizer_kwargs)._update( self.W_cell, cg(dW_cell)) self.b_cell = optimizer(self.optimizer_kwargs)._update( self.b_cell, cg(db_cell)) return next_grad