示例#1
0
    def processImage(self, jpegbytes):


        self.currentImage = imresize(
            pygame.surfarray.array3d(pygame.image.load(cStringIO.StringIO(jpegbytes), 'tmp.jpg').convert()), (32, 24))

        self.currentImage = ndi.gaussian_filter(self.currentImage, .5) - ndi.gaussian_filter(self.currentImage, 1)

        self.currentImage = self.currentImage / 255.0

        self.pattern = np.tile(np.reshape(self.currentImage, (32 * 24 * 3)), (64, 1))

        self.pattern = self.pattern + 0.001 * (1 - np.random.random((self.pattern.shape[0], self.pattern.shape[1])))

        self.bias = np.ones((self.pattern.shape[0], 1))

        self.pattern = np.concatenate((self.pattern, self.bias), axis=1)

        self.act1 = np.concatenate((np.squeeze(np.array(af(np.dot(self.pattern, self.w1)))), self.bias), axis=1)

        self.act2 = np.squeeze(np.array(af(np.dot(self.act1, self.w2))))

        self.act22 = 0 * self.act2

        for i in range(self.act2.shape[0]):
            self.act22[i, np.argmax(self.act2[i, :])] = 1

        self.nn_treads = self.action_vectors_motor[np.argmax(np.sum(self.act22, axis=0))]

        print self.nn_treads

        if np.sum(np.abs(self.treads)):

            for i in range(np.asarray(self.action_vectors_motor).shape[0]):
                if self.action_vectors_motor[i] == self.treads:
                    break

            self.category = np.tile(self.action_vectors_neuro[i], (self.pattern.shape[0], 1))

            self.error = self.category - self.act2

            self.sse = np.power(self.error, 2).sum

            self.delta_w2 = self.error * self.act2 * (1 - self.act2)

            self.delta_w1 = np.dot(self.delta_w2, self.w2.transpose()) * self.act1 * (1 - self.act1)

            self.delta_w1 = np.delete(self.delta_w1, -1, 1)

            self.dw1 = np.dot(self.L1, np.dot(self.pattern.transpose(), self.delta_w1)) + self.M * self.dw1
            self.dw2 = np.dot(self.L2, np.dot(self.act1.transpose(), self.delta_w2)) + self.M * self.dw2
            self.w1 = self.w1 + self.dw1
            self.w2 = self.w2 + self.dw2

            self.w1 = self.w1 + 0.00001 * (-0.5 + np.random.random((self.w1.shape[0], self.w1.shape[1])))
            self.w2 = self.w2 + 0.00001 * (-0.5 + np.random.random((self.w2.shape[0], self.w2.shape[1])))
示例#2
0
文件: ann.py 项目: liziniu/CVAE
    def forward_get_all(self, inputs):
        """
        Returns the outputs from all layers, from input to output.
        
        Parameters
        ----------
        inputs : NxD np array
            An array with N samples with D dimensions (features). For example
            an input with 2 samples and 3 dimensions:

                inputs = array([[1,2,3], 
                                [3,4,5]])

        Returns
        -------
            result : list
                A list of 2d np arrays. The all the arrays will have N rows,
                the number of outputs for each array will depend on the
                of nodes in that particular layer.
        """
        w = self.weights # shorthand
        samples,d = np.shape(inputs)
        res = []
        x = np.concatenate((inputs, np.array([np.ones(samples)]).T), axis=1)
        for i in range(0, self.get_num_layers()):
            af = self.act_funcs[i][0]
            y = af(np.dot(x, w[i].T))
            res.append(y)
            if i+1 != self.get_num_layers():
                x = np.concatenate((y, np.array([np.ones(samples)]).T), axis=1)
        return res
示例#3
0
    def processImage(self, jpegbytes):

        self.currentImage = imresize(
            pygame.surfarray.array3d(
                pygame.image.load(cStringIO.StringIO(jpegbytes),
                                  'tmp.jpg').convert()), (32, 24))

        self.currentImage = ndi.gaussian_filter(
            self.currentImage, .5) - ndi.gaussian_filter(self.currentImage, 1)

        self.currentImage = self.currentImage / 255.0

        self.pattern = np.tile(np.reshape(self.currentImage, (32 * 24 * 3)),
                               (64, 1))

        self.pattern = self.pattern + 0.001 * (1 - np.random.random(
            (self.pattern.shape[0], self.pattern.shape[1])))

        self.bias = np.ones((self.pattern.shape[0], 1))

        self.pattern = np.concatenate((self.pattern, self.bias), axis=1)

        self.act1 = np.concatenate((np.squeeze(
            np.array(af(np.dot(self.pattern, self.w1)))), self.bias),
                                   axis=1)

        self.act2 = np.squeeze(np.array(af(np.dot(self.act1, self.w2))))

        self.act22 = 0 * self.act2

        for i in range(self.act2.shape[0]):
            self.act22[i, np.argmax(self.act2[i, :])] = 1

        self.nn_treads = self.action_vectors_motor[np.argmax(
            np.sum(self.act22, axis=0))]

        print self.nn_treads

        if np.sum(np.abs(self.treads)):

            for i in range(np.asarray(self.action_vectors_motor).shape[0]):
                if self.action_vectors_motor[i] == self.treads:
                    break

            self.category = np.tile(self.action_vectors_neuro[i],
                                    (self.pattern.shape[0], 1))

            self.error = self.category - self.act2

            self.sse = np.power(self.error, 2).sum

            self.delta_w2 = self.error * self.act2 * (1 - self.act2)

            self.delta_w1 = np.dot(
                self.delta_w2,
                self.w2.transpose()) * self.act1 * (1 - self.act1)

            self.delta_w1 = np.delete(self.delta_w1, -1, 1)

            self.dw1 = np.dot(self.L1,
                              np.dot(self.pattern.transpose(),
                                     self.delta_w1)) + self.M * self.dw1
            self.dw2 = np.dot(self.L2,
                              np.dot(self.act1.transpose(),
                                     self.delta_w2)) + self.M * self.dw2
            self.w1 = self.w1 + self.dw1
            self.w2 = self.w2 + self.dw2

            self.w1 = self.w1 + 0.00001 * (-0.5 + np.random.random(
                (self.w1.shape[0], self.w1.shape[1])))
            self.w2 = self.w2 + 0.00001 * (-0.5 + np.random.random(
                (self.w2.shape[0], self.w2.shape[1])))
示例#4
0
    def process_image_from_rover(self, jpegbytes):
        try:
            self.currentImage = imresize(
                pygame.surfarray.array3d(pygame.image.load(cStringIO.StringIO(jpegbytes), "tmp.jpg").convert()),
                (32, 24),
            )

            self.currentImage = ndi.gaussian_filter(self.currentImage, 0.5) - ndi.gaussian_filter(self.currentImage, 1)

            self.currentImage = self.currentImage / 255.0

            self.pattern = np.tile(np.reshape(self.currentImage, (32 * 24 * 3)), (64, 1))

            self.pattern += 0.001 * (1 - np.random.random((self.pattern.shape[0], self.pattern.shape[1])))

            self.bias = np.ones((self.pattern.shape[0], 1))

            self.pattern = np.concatenate((self.pattern, self.bias), axis=1)

            self.act1 = np.concatenate(
                (np.squeeze(np.array(af(np.dot(self.pattern, self.network_weight_one)))), self.bias), axis=1
            )

            self.act2 = np.squeeze(np.array(af(np.dot(self.act1, self.network_weight_two))))

            self.act22 = 0 * self.act2

            for i in range(self.act2.shape[0]):
                self.act22[i, np.argmax(self.act2[i, :])] = 1

            self.nn_treads = self.action_vectors_motor[np.argmax(np.sum(self.act22, axis=0))]

            print(self.nn_treads)

            if np.sum(np.abs(self.treads)):

                for i in range(np.asarray(self.action_vectors_motor).shape[0]):
                    if self.action_vectors_motor[i] == self.treads:
                        break

                self.category = np.tile(self.action_vectors_neuro[i], (self.pattern.shape[0], 1))

                self.error = self.category - self.act2

                self.sse = np.power(self.error, 2).sum

                self.delta_w2 = self.error * self.act2 * (1 - self.act2)

                self.delta_w1 = np.dot(self.delta_w2, self.network_weight_two.transpose()) * self.act1 * (1 - self.act1)

                self.delta_w1 = np.delete(self.delta_w1, -1, 1)

                self.dw1 = (
                    np.dot(self.network_learning_rate_one, np.dot(self.pattern.transpose(), self.delta_w1))
                    + self.M * self.dw1
                )
                self.dw2 = (
                    np.dot(self.network_learning_rate_two, np.dot(self.act1.transpose(), self.delta_w2))
                    + self.M * self.dw2
                )
                self.network_weight_one = self.network_weight_one + self.dw1
                self.network_weight_two = self.network_weight_two + self.dw2

                self.network_weight_one += 0.0001 * (
                    -0.5 + np.random.random((self.network_weight_one.shape[0], self.network_weight_one.shape[1]))
                )  # increase random Value
                self.network_weight_two += 0.0001 * (
                    -0.5 + np.random.random((self.network_weight_two.shape[0], self.network_weight_two.shape[1]))
                )  # increase random Value
        except:
            pass