示例#1
0
def main(ExecutableName):

    ArgParser,\
    Arguments   = ArgumentParser.ParseArguments()

    Ext = ''
    Log = Logger.Logger(ExecutableName,
                        Ext)
    LogString  = '## START TIMESTAMP\n'
    LogString += str(Log.GetStartDate())+'\n'
    LogString += '## END TIMESTAMP'
    print LogString
    Log.Write(LogString+'\n')
    LogString = Log.GetStartLogString()
    print LogString
    Log.Write(LogString+'\n')
    ArgumentParser.LogArguments(Log,
                                ArgParser,
                                Arguments)

    BadSNPs = {}
    fr = open(Arguments.BadSNPFile,'r')
    for Line in fr:
        BadSNPs[Line.strip()] = None
    fr.close()

    TmpPath = os.path.join(os.getcwd(),'Tmp')
    if(not os.path.isdir(TmpPath)):
        os.mkdir(TmpPath)
    SNPInfoDict  = {} # will contain a dictionary of two elements: {'chr':int(chr),'pos':int(pos)}
    SNPChrArray  = scipy.array([])
    SNPPosArray  = scipy.array([])
    SNPXPosArray = scipy.array([])
    XLeft        = []
    XRight       = []
    XTicks       = []
    XTickLabels  = []
    XXMax        = None
    XXMin        = None
    if(Arguments.YProperty=='PHE'):
        XPath               = Arguments.SNPInfoFile
        SNPInfoDecompressed = os.path.join(TmpPath,re.sub('\.gz','',Arguments.SNPInfoFile))
        os.system('pigz -d -c -k '+XPath+' > '+SNPInfoDecompressed)
        FH          = open(SNPInfoDecompressed,'r')
        HeaderList  = FH.readline().strip().split(',')
        FH.close()
        SNPIDArray  = None
        ChrArray    = None
        PosArray    = None
        SNPIDColumn = None
        ChrColumn   = None
        PosColumn   = None
        for Entry in HeaderList:
            if(Entry=='rsid'):
                SNPIDColumn = HeaderList.index(Entry)
            if(Entry=='CHR'):
                ChrColumn = HeaderList.index(Entry)
            if(Entry=='pos'):
                PosColumn = HeaderList.index(Entry)
        Arrays = scipy.loadtxt(fname=SNPInfoDecompressed,
                               dtype=str,
                               skiprows=1,
                               delimiter=',',
                               usecols=[SNPIDColumn,
                                        ChrColumn,
                                        PosColumn],
                               unpack=True)
        os.remove(SNPInfoDecompressed)
        SNPIDArray = Arrays[0]
        ChrArray   = Arrays[1].astype(int)
        PosArray   = Arrays[2].astype(int)
        ArgSort    = scipy.argsort(ChrArray)
        SNPIDArray = SNPIDArray[ArgSort]
        ChrArray   = ChrArray[ArgSort]
        PosArray   = PosArray[ArgSort]

        TmpSNPIDArray = scipy.array([])
        TmpChrArray   = scipy.array([])
        TmpPosArray   = scipy.array([])
        TmpXPosArray  = scipy.array([])
        XMax          = 0
        for c in range(Arguments.NChr):
            Chr              = c+1
            FilterArray      = (ChrArray==Chr)
            TmpTmpSNPIDArray = scipy.compress(FilterArray,SNPIDArray)
            TmpTmpChrArray   = scipy.compress(FilterArray,ChrArray)
            TmpTmpPosArray   = scipy.compress(FilterArray,PosArray)
            ArgSort          = scipy.argsort(TmpTmpPosArray)
            TmpTmpSNPIDArray = TmpTmpSNPIDArray[ArgSort]
            TmpTmpChrArray   = TmpTmpChrArray[ArgSort]
            TmpTmpPosArray   = TmpTmpPosArray[ArgSort]
            TmpTmpXPosArray  = TmpTmpPosArray+XMax
            XLeft.append(float(TmpTmpXPosArray.min()))
            XRight.append(float(TmpTmpXPosArray.max()))
            XTicks.append(0.5*(XLeft[-1]+XRight[-1]))
            XTickLabels.append(r'${\rm '+str(Chr)+r'}$')

            TmpSNPIDArray = scipy.append(TmpSNPIDArray,TmpTmpSNPIDArray)
            TmpChrArray   = scipy.append(TmpChrArray,TmpTmpChrArray)
            TmpPosArray   = scipy.append(TmpPosArray,TmpTmpPosArray)
            TmpXPosArray  = scipy.append(TmpXPosArray,TmpTmpXPosArray)
            XMax          = TmpXPosArray.max()
            del TmpTmpSNPIDArray
            del TmpTmpChrArray
            del TmpTmpPosArray
            del TmpTmpXPosArray

        SNPIDArray = scipy.array(TmpSNPIDArray)
        ChrArray   = scipy.array(TmpChrArray)
        PosArray   = scipy.array(TmpPosArray)
        XPosArray  = scipy.array(TmpXPosArray)
        del TmpSNPIDArray
        del TmpChrArray
        del TmpPosArray
        del TmpXPosArray

        for i in range(len(SNPIDArray)):
            Entry                       = SNPIDArray[i]
            SNPInfoDict[Entry]          = {}
#            SNPInfoDict[Entry]['chr']   = ChrArray[i]
#            SNPInfoDict[Entry]['pos']   = PosArray[i]
#            SNPInfoDict[Entry]['xpos']  = XPosArray[i]
            SNPInfoDict[Entry]['index'] = i
        SNPChrArray  = scipy.array([])
        SNPPosArray  = scipy.array([])
        SNPXPosArray = scipy.array([])
        SNPChrArray  = scipy.append(SNPChrArray,ChrArray).astype(int)
        SNPPosArray  = scipy.append(SNPPosArray,PosArray).astype(int)
        SNPXPosArray = scipy.append(SNPXPosArray,XPosArray).astype(int)
        XXMin = XPosArray.min()
        XXMax = XPosArray.max()
        LogString = '**** Parsed \"SNPInfo.txt\" ...'
        print LogString
        Log.Write(LogString+'\n')

#    if(Arguments.YProperty=='PHE'):
#        XPath       = Arguments.GWAOutPath
#        XListDir    = os.listdir(XPath)
#        MinXSpacing = iLARGE
#        XMin        = None
#        XMax        = 0
#        X           = []
#        XLeft       = []
#        XRight      = []
#        XTicks      = []
#        XTickLabels = []
#        for p in range(1): # if XProperty=='pos', all phenotypes have the same pos file content.
#            P = 'PHE'+str(p+1)+'_'
#            for c in range(Arguments.NChr):
#                C = 'CHR'+str(c+1)+'_'
#                for File in XListDir:
#                    if(re.search(C+P,File)):
#                        fr   = open(os.path.join(XPath,File),'r')
#                        FMem = []
#                        for Line in fr.readlines():
#                            FMem.append(int(Line.strip().split()[0]))
#                        fr.close()
#                        for i in range(1,len(FMem)):
#                            MinXSpacing = min(MinXSpacing,FMem[i]-FMem[i-1])
##                        XMin = min(FMem)+XMax
#                        X.extend(list(scipy.array(FMem)+XMax))
#                        if(p==0):
#                            XLeft.append(float(min(FMem))+XMax)
#                            XRight.append(float(max(FMem))+XMax)
#                            XTicks.append(0.5*(float(min(FMem))+float(max(FMem)))+XMax)
#                            XTickLabels.append(r'${\rm '+re.sub('_','',C)+'}$')
#                        XMax = max(X)
#                        del FMem
#        X     = scipy.array(X)
#        XXMin = X.min()
#        XXMax = X.max()

        LogString = '**** Parsed x-axis properties ...'
        print LogString
        Log.Write(LogString+'\n')

        YMin        = 1
        YMax        = Arguments.NPhe
        MinYSpacing = 1
        Y           = []
        for y in range(YMax):
            Y.append(y+1)
        LogString = '**** Processed y-axis properties ...'
        print LogString
        Log.Write(LogString+'\n')

        MNumber = None
        MName   = None
        MClass  = None
        if(Arguments.MetabolitClassesFileName!=''):
            MNumber = []
            MName   = []
            MClass  = []
            fr      = open(Arguments.MetabolitClassesFileName,'r')
            for Line in fr.readlines():
                if(Line[0]=="#"):
                    continue
                LStrp = Line.strip().split()
                MNumber.append(LStrp[0])
                MName.append(LStrp[1])
                MClass.append(LStrp[2])
            fr.close()
            Classes    = list(set(MClass))
            ClassDict  = {}
            ClassRange = {}
            for Entry in Classes:
                ClassDict[Entry] = []
                for i in range(len(MClass)):
                    if(Entry==MClass[i]):
                        ClassDict[Entry].append(int(MNumber[i]))
                ClassRange[Entry] = [min(ClassDict[Entry]),max(ClassDict[Entry])]
        if(Arguments.PhenotypeListFile!=''):
            MNumber = []
            MName   = []
            MClass  = []
            fr      = open(Arguments.PhenotypeListFile,'r')
            fr.readline()
            for Line in fr:
                LStrp = Line.strip().split(',')
                MNumber.append(LStrp[0])
                MName.append(LStrp[-1])
                MClass.append('None')
            fr.close()
#            Classes    = list(set(MClass))
#            ClassDict  = {}
#            ClassRange = {}
#            for Entry in Classes:
#                ClassDict[Entry] = []
#                for i in range(len(MClass)):
#                    if(Entry==MClass[i]):
#                        ClassDict[Entry].append(int(MNumber[i]))
#                ClassRange[Entry] = [min(ClassDict[Entry]),max(ClassDict[Entry])]

        ZMin        = 0.0
        ZMax        = -fLARGE
        ZPath       = Arguments.GWAOutPath
        ZListDir    = os.listdir(ZPath)
        if(Arguments.boReadZExtrFromFile):
            LogString = '**** Reading z-axis extrema from file \"'+os.path.join(ZPath,'Extrema.dat')+'\" ...'
            print LogString
            Log.Write(LogString+'\n')
            fr    = open(os.path.join(ZPath,'Extrema.dat'),'r')
            LSplt = fr.readline().strip().split()
            fr.close()
            ZMin = float(LSplt[0])
            ZMax = float(LSplt[1])
        else:
            for p in range(Arguments.NPhe): # Scan for the maximum value of Z for the colorbar
                P = 'PHE'+str(p+1)+'_'
                Z = []
                for c in range(Arguments.NChr):
                    C    = 'CHR'+str(c+1)+'_'
                    File = os.path.join(ZPath,C+P+Arguments.ZProperty+'.dat')
                    fr   = None
                    if(os.path.basename(File) in ZListDir):
                        fr = open(File,'r')
                        for Line in fr:
                            Value = Line.strip()
                            if((Value!='-1') or
                               (not re.search('nan',Value))):
                                Z.append(float(Value))
                            else:
                                Z.append(1.0)
                        fr.close()
                Z    = scipy.array(Z)
                ZMax = max(ZMax,scipy.real(-scipy.log10(Z)).max())
                del Z
                LogString = '**** Determining maximal z-axis value, now at '+re.sub('_','',P)+', ZMax = '+str(ZMax)+' ...'
                print LogString
                Log.Write(LogString+'\n')
            LogString = '**** Writing z-axis extrema to file \"'+os.path.join(ZPath,'Extrema.dat')+'\" ...'
            print LogString
            Log.Write(LogString+'\n')
            fw = open(os.path.join(ZPath,'Extrema.dat'),'w')
            fw.write(str(ZMin)+' '+str(ZMax)+'\n')
            fw.close()

        LogString = '**** Parsing in z-axis properties ...'
        print LogString
        Log.Write(LogString+'\n')
        ZSugg = {}
        ZSign = {}
        YSugg = {}
        YSign = {}
        XSugg = {}
        XSign = {}

        NoPlotList = []
        ExclMtbList =['C16.OH',\
                      'C16.1.OH',\
                      'C16.2',\
                      'C16.2.OH',\
                      'C18.1.OH',\
                      'C3.OH',\
                      'C3.1',\
                      'PC.aa.C24.0',\
                      'PC.aa.C30.2',\
                      'PC.aa.C38.1',\
                      'PC.ae.C30.1',\
                      'lysoPC.a.C6.0',\
                      'SM.C22.3']
#        for p in range(0):
#        for p in range(72,73):
#        for p in range(2):
        for p in range(Arguments.NPhe):
            P          = 'PHE'+str(p+1)+'_'
            PHE        = re.sub('_','',P)
            Mtb        = MName[MNumber.index(str(p+1))]
            boExclude  = False
            for m in Mtb.split('_Over_'):
                if(m in ExclMtbList):
                    boExclude = True
            if(boExclude):
                continue
            FName      = os.path.join(Arguments.GWAOutPath,Mtb+'_GWA.out')
            os.system('pigz -d -c -k '+FName+'.gz > '+FName)
#            if((not os.path.isfile(FName)) or
#               (not os.path.islink(FName))):
#                NoPlotList.append(p)
#                continue
            LogString  = '** Now at '+PHE+' (\"'+FName+'\") ...'
            print LogString
            Log.Write(LogString+'\n')
            FH     = open(FName,'r')
            Header = FH.readline().strip().split()
            if(len(FH.readline())==0):
                FH.close()
                continue
            FH.close()
            SNPIDCol = Header.index('SNP')
            PValCol  = Header.index('Pvalue')
            Arrays   = scipy.loadtxt(fname=FName,
                                     dtype=str,
                                     skiprows=1,
                                     usecols=[SNPIDCol,PValCol],
                                     unpack=True)

            RsIdArray  = Arrays[0]
            PValArray  = Arrays[1]
            if(type(PValArray)==scipy.string_):
                PValArray = scipy.array([PValArray])
                RsIdArray = scipy.array([RsIdArray])

            FilterArray = (PValArray!='NA')
            PValArray   = scipy.compress(FilterArray,PValArray).astype(float)
            RsIdArray   = scipy.compress(FilterArray,RsIdArray)
            FilterArray = []
            for ii in range(len(RsIdArray)):
                if(BadSNPs.has_key(RsIdArray[ii])):
                    FilterArray.append(False)
                else:
                    FilterArray.append(True)
            FilterArray = scipy.array(FilterArray)
            PValArray   = scipy.compress(FilterArray,PValArray)
            RsIdArray   = scipy.compress(FilterArray,RsIdArray)
            del FilterArray

            ZZ         = scipy.real(-scipy.log10(PValArray))
#            TmpArray   = scipy.append(SNPIDArray,RSIdArray)
#            TmpArray,\
#            IndexArray = scipy.unique(ar=TmpArray,
#                                      return_inverse=True)
#            TmpArray   = scipy.append(RSIdArray,SNPIDArray)
#            TmpArray,\
#            tTmpArray  = scipy.unique(ar=TmpArray,
#                                      return_inverse=True)
#            IndexArray = scipy.append(IndexArray,tTmpArray)
#            del TmpArray
#            del tTmpArray
#            IndexArray = scipy.unique(ar=IndexArray)
#            for Entry in RSIdArray:
#                IndexArray.append(SNPIDList.index(Entry))
#                print Entry
#            IndexArray = scipy.array(IndexArray)
            IndexArray = []
            for Entry in RsIdArray:
                IndexArray.append(SNPInfoDict[Entry]['index'])
            IndexArray = scipy.array(IndexArray)
            X          = XPosArray[IndexArray]
            ChromArray = ChrArray[IndexArray]
#            for c in range(Arguments.NChr):
#                C = 'CHR'+str(c+1)+'_'
#                for File in ZListDir:
#                    if(re.search(C+P,File)):
#                        fr   = open(os.path.join(ZPath,File),'r')
#                        FMem = []
#                        for Line in fr.readlines():
#                            z = Line.strip().split()[0]
#                            if(z!='-1'):
#                                FMem.append(float(z))
#                            else:
#                                FMem.append(1.0)
#                        fr.close()
#                        FMem  = scipy.real(-scipy.log10(scipy.array(FMem)))
#                        ZZ.extend(list(FMem))
#                        del FMem
#            Sign  = (ZZ  > (-scipy.log10(5.0e-8)))
#            Sugg  = (ZZ >= (-scipy.log10(1.0e-6)))
#            Sugg *= (ZZ <= (-scipy.log10(5.0e-8)))
#            Sign  = (ZZ  > (-scipy.log10(5.0e-8/150.0)))
#            Sugg  = (ZZ >= (-scipy.log10(1.0e-6/150.0)))
#            Sugg *= (ZZ <= (-scipy.log10(5.0e-8/150.0)))
#            Sign  = (ZZ  > (-scipy.log10(5.0e-8/11325.0)))
#            Sugg  = (ZZ >= (-scipy.log10(1.0e-6/11325.0)))
#            Sugg *= (ZZ <= (-scipy.log10(5.0e-8/11325.0)))
            Sign  = (ZZ  > (-scipy.log10(5.0e-8/130.0)))
            Sugg  = (ZZ >= (-scipy.log10(1.0e-6/130.0)))
            Sugg *= (ZZ <= (-scipy.log10(5.0e-8/130.0)))
#            Sign  = (ZZ  > (-scipy.log10(5.0e-8/float(Arguments.NPhe))))
#            Sugg  = (ZZ >= (-scipy.log10(1.0e-6/float(Arguments.NPhe))))
#            Sugg *= (ZZ <= (-scipy.log10(5.0e-8/float(Arguments.NPhe))))

#            ZSugg[PHE] = scipy.compress(Sugg,ZZ)
            ZSign[PHE] = scipy.compress(Sign,ZZ)
#            YSugg[PHE] = scipy.ones(len(ZSugg[PHE]))*(p+1)
            YSign[PHE] = scipy.ones(len(ZSign[PHE]))*(p+1)
#            XSugg[PHE] = scipy.compress(Sugg,X)
            XSign[PHE] = scipy.compress(Sign,X)
            del ZZ
            LogString  = '** Parsed \"'+FName+'\" ...'
            print LogString
            Log.Write(LogString+'\n')
            os.system('rm '+FName)

#        del X
#        del Y

#        LogString = '**** Parsing in z-axis properties ...'
#        print LogString
#        Log.Write(LogString+'\n')
#        ZSugg = {}
#        ZSign = {}
#        YSugg = {}
#        YSign = {}
#        XSugg = {}
#        XSign = {}
#        for p in range(Arguments.NPhe):
##        for p in range(0):
#            P          = 'PHE'+str(p+1)+'_'
#            PHE        = re.sub('_','',P)
#            LogString  = '** Now at '+PHE+' ...'
#            print LogString
#            Log.Write(LogString+'\n')
#            ZZ = []
#            for c in range(Arguments.NChr):
#                C = 'CHR'+str(c+1)+'_'
#                for File in ZListDir:
#                    if(re.search(C+P,File)):
#                        fr   = open(os.path.join(ZPath,File),'r')
#                        FMem = []
#                        for Line in fr.readlines():
#                            z = Line.strip().split()[0]
#                            if(z!='-1'):
#                                FMem.append(float(z))
#                            else:
#                                FMem.append(1.0)
#                        fr.close()
#                        FMem  = scipy.real(-scipy.log10(scipy.array(FMem)))
#                        ZZ.extend(list(FMem))
#                        del FMem
#            Sign  = ZZ  > -scipy.log10(5.0e-8)
#            Sugg  = ZZ >= -scipy.log10(1.0e-6)
#            Sugg *= ZZ <= -scipy.log10(5.0e-8)
#            ZSugg[PHE] = scipy.compress(Sugg,ZZ)
#            ZSign[PHE] = scipy.compress(Sign,ZZ)
#            YSugg[PHE] = scipy.ones(len(ZSugg[PHE]))*(p+1)
#            YSign[PHE] = scipy.ones(len(ZSign[PHE]))*(p+1)
#            XSugg[PHE] = scipy.compress(Sugg,X)
#            XSign[PHE] = scipy.compress(Sign,X)
#            del ZZ
#        del X
#        del Y

        LogString = '**** Generating 3D-Manhattan plot ...'
        print LogString
        Log.Write(LogString+'\n')

#       Lay-out stuff
        figwidth_pt   = 1422.0 # pt (from revtex \showthe\columnwidth)
        inches_per_pt = 1.0/72.27
        figwidth      = figwidth_pt*inches_per_pt
        golden_mean   = (scipy.sqrt(5.0)-1.0)/2.0 # Aesthetic ratio
        figheight     = figwidth*golden_mean
        fig_size      = [figwidth,figheight]
        params        = {'backend': 'pdf',
                         'patch.antialiased': True,
#                         'axes.labelsize': 28,
                         'axes.labelsize': 18,
                         'axes.linewidth': 0.5,
                         'grid.color': '0.75',
                         'grid.linewidth': 0.25,
                         'grid.linestyle': ':',
                         'axes.axisbelow': False,
                         'text.fontsize': 14,
#                         'text.fontsize': 24,
                         'legend.fontsize': 14,
#                         'axes.fontsize': 24,
                         'xtick.labelsize': 12,
#                         'xtick.labelsize': 22,
                         'ytick.labelsize': 12,
#                         'ytick.labelsize': 22,
                         'ztick.labelsize': 12,
#                         'ztick.labelsize': 22,
                         'text.usetex': True,
                         'figure.figsize': fig_size}
        left   = 0.06
        bottom = 0.125
        width  = 0.88-left
        height = 0.95-bottom

        pylab.rcParams.update(params)

        PylabFigure = pylab.figure()
        PylabFigure.clf()

        Rectangle   = [left, bottom, width, height]
        PylabAxis   = PylabFigure.add_subplot(111,projection='3d')
        if(Arguments.XProperty=='pos'):
            PylabAxis.set_xlabel(r'${\rm chromosome}$')
        if(Arguments.YProperty=='PHE'):
            PylabAxis.set_ylabel(r'${\rm metabolite}$')
        PylabAxis.set_zlabel(r'$-\log_{10}(p-{\rm value})$')

#        for p in range(2):
        for p in range(Arguments.NPhe):
            P  = 'PHE'+str(p+1)
#            if(len(ZSugg[P])>0):
#                PylabAxis.scatter(x=XSugg[P],
#                                  y=YSugg[P],
#                                  color='black',
#                                  s=ZSugg[P]/ZMax*100.0,
#                                  marker='s',
#                                  alpha=0.15,
#                                  antialiased=True,
#                                  edgecolors='none')
            if(ZSign.has_key(P)):
                if(len(ZSign[P])>0):
                    PylabAxis.scatter(xs=XSign[P],
                                      ys=YSign[P],
                                      zs=ZSign[P],
                                      color='black',
                                      marker='o',
                                      alpha=0.25,
                                      edgecolors='none',
                                      antialiased=True)
#        PlotFile  = 'Manhattan3D.pdf'
        PlotFile  = 'Manhattan3DPlot.png'
#        PlotFile  = 'Manhattan3DFastRatios.pdf'
#        PlotFile  = 'Manhattan3DFastSingleMtbs.pdf'
#        PlotFile  = 'Manhattan3DFastConservativeSingleMtbs.pdf'
        LogString = '**** Writing plot to \"'+PlotFile+'\" ...'
        print LogString
        Log.Write(LogString+'\n')
        XXRange  = float(XXMax)-float(XXMin)
        XXOffset = XXRange*0.005
        PylabAxis.set_xlim3d([float(XXMin)-XXOffset,float(XXMax)+XXOffset])
        PylabAxis.set_ylim3d([0,YMax+2])
#        for Key,Value in ClassRange.iteritems():
#            PylabAxis.plot(scipy.array([float(XXMin)-XXOffset,float(XXMax)+XXOffset]),
#                           scipy.ones(2)*Value[0]-0.5,
#                           lw=0.25,
#                           color='black')
#            PylabAxis.plot(scipy.array([float(XXMin)-XXOffset,float(XXMax)+XXOffset]),
#                           scipy.ones(2)*Value[1]+0.5,
#                           lw=0.25,
#                           color='black')
#            PylabAxis.text(float(XXMax)+XXOffset,
#                           float(Value[0]+Value[1])*0.5,
#                           r'${\rm '+Key+'}$',
#                           verticalalignment='center',
#                           size=20)
#        for Entry in XLeft:
#            PylabAxis.plot(scipy.array([Entry,Entry]),
#                           scipy.array(PylabAxis.get_ylim()),
#                           lw=0.25,
#                           color='black')
#        for Entry in XRight:
#            PylabAxis.plot(scipy.array([Entry,Entry]),
#                           scipy.array(PylabAxis.get_ylim()),
#                           lw=0.25,
#                           color='black')

        print PylabAxis.w_xaxis.get_ticklabels()
        print len(PylabAxis.w_xaxis.get_ticklabels())
        print XTickLabels
        print len(XTickLabels)
        print XTicks
        print len(XTicks)
        Ticks = []
        for T in XTicks:
            Ticks.append(T)
        Labels = []
        for L in XTickLabels:
            Labels.append('')
        Labels[0]  = XTickLabels[0]
        Labels[9]  = XTickLabels[9]
        Labels[-1] = XTickLabels[-1]
#        for t in range(len(XTickLabels)):
#            XTickLabels[t] = ''
        PylabAxis.w_xaxis.set_ticklabels(Labels)
        PylabAxis.w_xaxis.set_major_locator(ticker.FixedLocator(Ticks))

#        PylabAxis.set_ylim([0,164])
#        PylabAxis.spines['right'].set_visible(False)
#        PylabAxis.spines['top'].set_visible(False)
#        PylabAxis.xaxis.set_ticks_position('bottom')
#        PylabAxis.yaxis.set_ticks_position('left')
#        PylabAxis.xaxis.set_ticks(XTicks)
#        PylabAxis.xaxis.set_ticklabels(XTickLabels)
#        for Label in PylabAxis.xaxis.get_ticklabels():
#            Label.set_rotation(90)

#        pylab.savefig(PlotFile)
        angles = scipy.linspace(315,(315+360),201)[:-1] # A list of 20 angles between 0 and 360
        # create a movie with 10 frames per seconds and 'quality' 2000
        rotanimate(PylabAxis, angles,'Manhattan3DPlot.mp4',fps=10,bitrate=2000)
        # create an animated gif (20ms between frames)
        rotanimate(PylabAxis, angles,'Manhattan3DPlot.gif',delay=20)
    else:
        print '!! NOT IMPLEMENTED YET !!'

    LogString = '**** Done :-)'
    print LogString
    Log.Write(LogString+'\n')
    LogString = Log.GetEndLogString()
    print LogString
    Log.Write(LogString+'\n')
    Log.Close()

    return
示例#2
0
def pathplot(hoc, movie='', ms=15, fs=30, lw=2, res=30, invert=True, pkl=''):

    # Initialize figure
    fig = plt.figure()
    ax = fig.gca(projection='3d')

    # Convert given hoc file into a geo object
    print('*Building geo object for {}, please wait...'.format(hoc))
    geo = demoReadsilent(hoc)
    print('*Building heatmap for {}, please wait...'.format(hoc))

    # Find the tip segments and their end locations
    tips, ends = geo.getTips()
   
    # Calculate the path distance to each tip
    pDF = PathDistanceFinder(geo, geo.soma)
    pdists = [pDF.distanceTo(seg) for seg in tips]
   
    # Calculate the coordinate position of each tip
    coords = [tips[i].coordAt(ends[i]) for i in range(len(tips))]
    
    # Establish color scheme
    ic = 'black'
    if invert:
        ax.set_axis_bgcolor('black')
        ax.patch.set_facecolor('black')
        fig.patch.set_facecolor('black')
        ic = 'white'
        for spine in ax.spines: ax.spines[spine].set_color('white')
        ax.xaxis.label.set_color('white')
        ax.yaxis.label.set_color('white')
        ax.tick_params(axis='x', colors='white')
        ax.tick_params(axis='y', colors='white')

    # Build and plot the neuron skeleton (includes axons)
    bpts = []
    for b in geo.branches:
        bpts.append([[n.x, n.y, n.z] for n in b.nodes])
    for b in bpts:
        for c in range(len(b)-1):
            ax.plot([b[c][0], b[c+1][0]], 
                    [b[c][1], b[c+1][1]],
                    [b[c][2], b[c+1][2]], 
                    color=ic, alpha=0.5, linewidth=lw)
        
    # Set up the path distance color map with normalized values
    vmax = max(pdists)
    tfloats = [float(i)/vmax for i in pdists]
    cmap = plt.cm.viridis # viridis > inferno >> jet
    tcolors = cmap(tfloats)

    # Plot points at tips and color by path distance
    for t, pts in enumerate(coords):
        ax.scatter(pts[0], pts[1], pts[2], c=tcolors[t],
                   edgecolors='face', alpha=0.9)
    
    # Plot point at the soma.
    ax.scatter(geo.soma.nodes[0].x, geo.soma.nodes[0].y, geo.soma.nodes[0].z,
               c = ic, s = 100, edgecolors='face')

    # Create a list of indices ordered from shortest path to longest
    pord = list(pdists) # Preserve pdists
    pind = []
    for p in pord:
        maxind = pord.index(max(pord))
        pind.append(maxind)
        pord.insert(maxind, -1)
        pord.remove(pord[maxind+1])
    pind.reverse()

    # Enumerate the paths leading to each tip in a dictionary
    tipDict = {}
    for d in range(len(tips)):
        tipDict[d] = pDF.pathTo(tips[d])
    
    # Overlay a tip path skeleton colored by path distance (discludes axons)
    for path in pind:
        if path==pind[0]: lw+=0.1
        else:lw+=0.001
        for seg in tipDict[path]:
            ax.plot([seg.nodes[0].x, seg.nodes[1].x], 
                    [seg.nodes[0].y, seg.nodes[1].y],
                    [seg.nodes[0].z, seg.nodes[1].z], 
                    color=tcolors[path], alpha=1, linewidth=lw)
    print('*The maximum linewidth is {}'.format(round(lw, 4)))
    print(lw)
    
    # Add colorbar
    sc = []
    sc.append(plt.scatter([0,0], [0,0], c=[0., 1.], s=0.1,
                          vmin=0, vmax=vmax, cmap=cmap))
    cbar = plt.colorbar(sc[-1])
    cbar.ax.yaxis.set_tick_params(color=ic)
    plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='white')

    # Add labels
    ax.set_xlabel('Micrometers', fontsize = fs, color = ic)
    ax.set_ylabel('Micrometers', fontsize = fs, color = ic)
    ax.set_zlabel('Micrometers', fontsize = fs, color = ic)
    ax.set_title('Heat Map of Neuron Tips Colored by Path Length',
                 fontsize = fs, color = ic)
    cbar.set_label("Path Length (um)", fontsize = fs, color = ic)
       
    print('*HEATMAP COMPLETE - Thank you for your patience.')
    
    # Save the figure as a .pickle
    if pkl != '':
        import pickle
        output = open(pkl + '.pickle', 'wb')
        pickle.dump(fig, output)
        output.close()
        
    # Save the figure as a movie
    if movie != '':
		
		# Remove whitespace around skeleton for visual appeal
        xpts = []
        ypts = []
        zpts = []
        for b in bpts:
            for c in range(len(b)-1):
                xpts.append(b[c][0])
                ypts.append(b[c][1])
                zpts.append(b[c][2])
        ax.set_xlim(min(xpts),max(xpts))
        ax.set_ylim(min(ypts),max(ypts))
        ax.set_zlim(min(zpts),max(zpts))
        
        # Remove axes for visual appeal.
        plt.axis('off')
        
        print('*Creating movie for {}, please wait...'.format(hoc))
 
        # Create an animated gif (delay ms between frames)
        if os.path.splitext(movie)[1] == '.gif':
            rotanimate(fig, ax, res, movie, delay=20,
                       width = ms, height = ms)
        
        # Create a movie with fps frames per second and bitrate 'quality'
        if os.path.splitext(movie)[1] == '.mp4':
            rotanimate(fig, ax, res, movie, fps=8, bitrate=2000,
                       width = ms, height = ms)
 
        # Create an ogv movie with fps frames per second
        if os.path.splitext(movie)[1] == '.ogv':
            rotanimate(fig, ax, res, movie, fps=8,
                       width = ms, height = ms)
        print('*MOVIE COMPLETE - Thank you for your patience.')

    # Display the figure in a new window
    fig.show()
示例#3
0
def main(ExecutableName):

#    Gene2RsIdDict = {}
#    RsId2GeneDict = {}
#    fr = open('AllAlphaNFHitsSheetUCSCGeneAnot.txt','r')
#    fr.readline()
#    for Line in fr:
#        LSplit = Line.strip().split()
#        if(not Gene2RsIdDict.has_key(LSplit[1])):
#            Gene2RsIdDict[LSplit[1]] = []
#        Gene2RsIdDict[LSplit[1]].append(LSplit[0])
#        if(not RsId2GeneDict.has_key(LSplit[0])):
#            RsId2GeneDict[LSplit[0]] = []
#        RsId2GeneDict[LSplit[0]].append(LSplit[1])
#    fr.close()

    ArgParser,\
    Arguments   = ArgumentParser.ParseArguments()

    Ext = ''
    Log = Logger.Logger(ExecutableName,
                        Ext)
    LogString  = '## START TIMESTAMP\n'
    LogString += str(Log.GetStartDate())+'\n'
    LogString += '## END TIMESTAMP'
    print LogString
    Log.Write(LogString+'\n')
    LogString = Log.GetStartLogString()
    print LogString
    Log.Write(LogString+'\n')
    ArgumentParser.LogArguments(Log,
                                ArgParser,
                                Arguments)
    TmpPath = os.path.join(os.getcwd(),'Tmp')
    if(not os.path.isdir(TmpPath)):
        os.mkdir(TmpPath)
    SNPInfoDict  = {} # will contain a dictionary of two elements: {'chr':int(chr),'pos':int(pos)}
    SNPChrArray  = scipy.array([])
    SNPPosArray  = scipy.array([])
    SNPXPosArray = scipy.array([])
    XLeft        = []
    XRight       = []
    XTicks       = []
    XTickLabels  = []
    XXMax        = None
    XXMin        = None
    if(Arguments.YProperty=='PHE'):
        XPath               = os.path.join(Arguments.PositionPath,'SNPInfo.txt.gz')
        SNPInfoDecompressed = os.path.join(TmpPath,'SNPInfo.txt')
        os.system('pigz -d -c -k '+XPath+' > '+SNPInfoDecompressed)
        FH          = open(SNPInfoDecompressed,'r')
        HeaderList  = FH.readline().strip().split()
        FH.close()
        SNPIDArray  = None
        ChrArray    = None
        PosArray    = None
        SNPIDColumn = None
        ChrColumn   = None
        PosColumn   = None
        for Entry in HeaderList:
            if(Entry=='SNPID'):
                SNPIDColumn = HeaderList.index(Entry)
            if(Entry=='chr'):
                ChrColumn = HeaderList.index(Entry)
            if(Entry=='position'):
                PosColumn = HeaderList.index(Entry)
        Arrays = scipy.loadtxt(fname=SNPInfoDecompressed,
                               dtype=str,
                               skiprows=1,
                               usecols=[SNPIDColumn,
                                        ChrColumn,
                                        PosColumn],
                               unpack=True)
        os.remove(SNPInfoDecompressed)
        SNPIDArray = Arrays[0]
        ChrArray   = Arrays[1].astype(int)
        PosArray   = Arrays[2].astype(int)
        ArgSort    = scipy.argsort(ChrArray)
        SNPIDArray = SNPIDArray[ArgSort]
        ChrArray   = ChrArray[ArgSort]
        PosArray   = PosArray[ArgSort]

        TmpSNPIDArray = scipy.array([])
        TmpChrArray   = scipy.array([])
        TmpPosArray   = scipy.array([])
        TmpXPosArray  = scipy.array([])
        XMax          = 0
        for c in range(Arguments.NChr):
            Chr              = c+1
            FilterArray      = (ChrArray==Chr)
            TmpTmpSNPIDArray = scipy.compress(FilterArray,SNPIDArray)
            TmpTmpChrArray   = scipy.compress(FilterArray,ChrArray)
            TmpTmpPosArray   = scipy.compress(FilterArray,PosArray)
            ArgSort          = scipy.argsort(TmpTmpPosArray)
            TmpTmpSNPIDArray = TmpTmpSNPIDArray[ArgSort]
            TmpTmpChrArray   = TmpTmpChrArray[ArgSort]
            TmpTmpPosArray   = TmpTmpPosArray[ArgSort]
            TmpTmpXPosArray  = TmpTmpPosArray+XMax
            XLeft.append(float(TmpTmpXPosArray.min()))
            XRight.append(float(TmpTmpXPosArray.max()))
            XTicks.append(0.5*(XLeft[-1]+XRight[-1]))
#            XTickLabels.append(r'${\rm CHR'+str(Chr)+r'}$')
            XTickLabels.append(str(Chr))

            TmpSNPIDArray = scipy.append(TmpSNPIDArray,TmpTmpSNPIDArray)
            TmpChrArray   = scipy.append(TmpChrArray,TmpTmpChrArray)
            TmpPosArray   = scipy.append(TmpPosArray,TmpTmpPosArray)
            TmpXPosArray  = scipy.append(TmpXPosArray,TmpTmpXPosArray)
            XMax          = TmpXPosArray.max()
            del TmpTmpSNPIDArray
            del TmpTmpChrArray
            del TmpTmpPosArray
            del TmpTmpXPosArray
#        XTicks.append(XRight[-1])
#        XTickLabels.append(r'${\rm CHR'+str(Chr)+r'}$')
#        XTickLabels.append(str(23))

        SNPIDArray = scipy.array(TmpSNPIDArray)
        ChrArray   = scipy.array(TmpChrArray)
        PosArray   = scipy.array(TmpPosArray)
        XPosArray  = scipy.array(TmpXPosArray)
        del TmpSNPIDArray
        del TmpChrArray
        del TmpPosArray
        del TmpXPosArray

        for i in range(len(SNPIDArray)):
            Entry                       = SNPIDArray[i]
            SNPInfoDict[Entry]          = {}
#            SNPInfoDict[Entry]['chr']   = ChrArray[i]
#            SNPInfoDict[Entry]['pos']   = PosArray[i]
#            SNPInfoDict[Entry]['xpos']  = XPosArray[i]
            SNPInfoDict[Entry]['index'] = i
        SNPChrArray  = scipy.array([])
        SNPPosArray  = scipy.array([])
        SNPXPosArray = scipy.array([])
        SNPChrArray  = scipy.append(SNPChrArray,ChrArray).astype(int)
        SNPPosArray  = scipy.append(SNPPosArray,PosArray).astype(int)
        SNPXPosArray = scipy.append(SNPXPosArray,XPosArray).astype(int)
        XXMin = XPosArray.min()
        XXMax = XPosArray.max()
        LogString = '**** Parsed \"SNPInfo.txt\" ...'
        print LogString
        Log.Write(LogString+'\n')

#    if(Arguments.YProperty=='PHE'):
#        XPath       = os.path.join(Arguments.SnpTestPath,Arguments.XProperty)
#        XListDir    = os.listdir(XPath)
#        MinXSpacing = iLARGE
#        XMin        = None
#        XMax        = 0
#        X           = []
#        XLeft       = []
#        XTicks      = []
#        XTickLabels = []
#        for p in range(1): # if XProperty=='pos', all phenotypes have the same pos file content.
#            P = 'PHE'+str(p+1)+'_'
#            for c in range(Arguments.NChr):
#                C = 'CHR'+str(c+1)+'_'
#                for File in XListDir:
#                    if(re.search(C+P,File)):
#                        fr   = open(os.path.join(XPath,File),'r')
#                        FMem = []
#                        for Line in fr.readlines():
#                            FMem.append(int(Line.strip().split()[0]))
#                        fr.close()
#                        for i in range(1,len(FMem)):
#                            MinXSpacing = min(MinXSpacing,FMem[i]-FMem[i-1])
##                        XMin = min(FMem)+XMax
#                        X.extend(list(scipy.array(FMem)+XMax))
#                        if(p==0):
#                            XLeft.append(float(min(FMem))+XMax)
#                            XRight.append(float(max(FMem))+XMax)
#                            XTicks.append(0.5*(float(min(FMem))+float(max(FMem)))+XMax)
#                            XTickLabels.append(r'${\rm '+re.sub('_','',C)+'}$')
#                        XMax = max(X)
#                        del FMem
#        X     = scipy.array(X)
#        XXMin = X.min()
#        XXMax = X.max()

        LogString = '**** Parsed x-axis properties ...'
        print LogString
        Log.Write(LogString+'\n')

        YMin        = 1
        YMax        = Arguments.NPhe
        MinYSpacing = 1
        Y           = []
        for y in range(YMax):
            Y.append(y+1)
        LogString = '**** Processed y-axis properties ...'
        print LogString
        Log.Write(LogString+'\n')

        MNumber  = None
        MName    = None
        MClass   = None
        MInclude = None
        if(Arguments.MetabolitClassesFileName!=''):
            MNumber  = []
            MName    = []
            MClass   = []
            MInclude = []
            fr       = open(Arguments.MetabolitClassesFileName,'r')
            for Line in fr.readlines():
                if(Line[0]=="#"):
                    continue
                LStrp = Line.strip().split()
                MNumber.append(LStrp[0])
                MName.append(LStrp[1])
                MClass.append(LStrp[2])
                if(len(LStrp)>3):
                    MInclude.append(LStrp[3])
            fr.close()
            Classes    = list(set(MClass))
            ClassDict  = {}
            ClassRange = {}
            for Entry in Classes:
                ClassDict[Entry] = []
                for i in range(len(MClass)):
                    if(Entry==MClass[i]):
                        ClassDict[Entry].append(int(MNumber[i]))
                ClassRange[Entry] = [min(ClassDict[Entry]),max(ClassDict[Entry])]

        ZMin        = 0.0
        ZMax        = -fLARGE
        ZPath       = os.path.join(Arguments.MAOutputPath,Arguments.ZProperty)
        ZListDir    = os.listdir(ZPath)
        if(Arguments.boReadZExtrFromFile):
            LogString = '**** Reading z-axis extrema from file \"'+os.path.join(ZPath,'Extrema.dat')+'\" ...'
            print LogString
            Log.Write(LogString+'\n')
            fr    = open(os.path.join(ZPath,'Extrema.dat'),'r')
            LSplt = fr.readline().strip().split()
            fr.close()
            ZMin = float(LSplt[0])
            ZMax = float(LSplt[1])
#        else:
#            for p in range(Arguments.NPhe): # Scan for the maximum value of Z for the colorbar
#                P = 'PHE'+str(p+1)+'_'
#                Z = []
#                for c in range(Arguments.NChr):
#                    C    = 'CHR'+str(c+1)+'_'
#                    File = os.path.join(ZPath,C+P+Arguments.ZProperty+'.dat')
#                    fr   = None
#                    if(os.path.basename(File) in ZListDir):
#                        fr = open(File,'r')
#                        for Line in fr:
#                            Value = Line.strip()
#                            if((Value!='-1') or
#                               (not re.search('nan',Value))):
#                                Z.append(float(Value))
#                            else:
#                                Z.append(1.0)
#                        fr.close()
#                Z    = scipy.array(Z)
#                ZMax = max(ZMax,scipy.real(-scipy.log10(Z)).max())
#                del Z
#                LogString = '**** Determining maximal z-axis value, now at '+re.sub('_','',P)+', ZMax = '+str(ZMax)+' ...'
#                print LogString
#                Log.Write(LogString+'\n')
#            LogString = '**** Writing z-axis extrema to file \"'+os.path.join(ZPath,'Extrema.dat')+'\" ...'
#            print LogString
#            Log.Write(LogString+'\n')
#            fw = open(os.path.join(ZPath,'Extrema.dat'),'w')
#            fw.write(str(ZMin)+' '+str(ZMax)+'\n')
#            fw.close()

        LogString = '**** Parsing in z-axis properties ...'
        print LogString
        Log.Write(LogString+'\n')
        ZSugg = {}
        ZSign = {}
        YSugg = {}
        YSign = {}
        XSugg = {}
        XSign = {}
        Color = {}

        NoPlotList = []
#        for p in range(0):
#        for p in range(72,73):
#        for Gene in ['FADS2']:
#        for Gene in Gene2RsIdDict.iterkeys():
        XS = []
        YS = []
        ZS = []
        for p in range(Arguments.NPhe):
            P          = 'PHE'+str(p+1)+'_'
            PHE        = re.sub('_','',P)
            Mtb        = MName[MNumber.index(str(p+1))]
            FName      = os.path.join(Arguments.MAOutputPath,'FilteredAlpha5e-08_MetaAnalysis_'+Mtb+'_1.csv')
            if(not (os.path.isfile(FName) or
               os.path.islink(FName))):
                NoPlotList.append(p)
                continue
            LogString  = '** Now at '+PHE+' (\"'+FName+'\") ...'
            print LogString
            Log.Write(LogString+'\n')
            FH     = open(FName,'r')
            Header = FH.readline().strip().split(',')
            CountLines = 0
            for Line in FH:
                CountLines += 1
            FH.close()
            if(CountLines==0):
                continue
            SNPIDCol = Header.index('MarkerName')
            PValCol  = Header.index('P-value')
            Arrays   = scipy.loadtxt(fname=FName,
                                     dtype=str,
                                     skiprows=1,
                                     delimiter=',',
                                     usecols=[SNPIDCol,PValCol],
                                     unpack=True)
            RsIdArray  = Arrays[0]
            PValArray  = Arrays[1].astype(float)
            ZZ         = scipy.real(-scipy.log10(PValArray))
            if(type(RsIdArray)==scipy.string_):
                RsIdArray = scipy.array([RsIdArray])
                PValArray = scipy.array([PValArray])
                ZZ        = scipy.real(-scipy.log10(PValArray))
            ColorList  = []
#            if(RsId2GeneDict.has_key[Rsid])
            for RsId in RsIdArray:
                ColorList.append('black')
#                if(RsId in Gene2RsIdDict[Gene]):
#                if(RsId2GeneDict.has_key(RsId)):
#                    ColorList.append('red')
#                    ColorList.append('black')
#                else:

#            TmpArray   = scipy.append(SNPIDArray,RSIdArray)
#            TmpArray,\
#            IndexArray = scipy.unique(ar=TmpArray,
#                                      return_inverse=True)
#            TmpArray   = scipy.append(RSIdArray,SNPIDArray)
#            TmpArray,\
#            tTmpArray  = scipy.unique(ar=TmpArray,
#                                      return_inverse=True)
#            IndexArray = scipy.append(IndexArray,tTmpArray)
#            del TmpArray
#            del tTmpArray
#            IndexArray = scipy.unique(ar=IndexArray)
#            for Entry in RSIdArray:
#                IndexArray.append(SNPIDList.index(Entry))
#                print Entry
#            IndexArray = scipy.array(IndexArray)
            IndexArray = []
            for Entry in RsIdArray:
                IndexArray.append(SNPInfoDict[Entry]['index'])
            IndexArray = scipy.array(IndexArray)
            X          = XPosArray[IndexArray]
            ChromArray = ChrArray[IndexArray]
#            for c in range(Arguments.NChr):
#                C = 'CHR'+str(c+1)+'_'
#                for File in ZListDir:
#                    if(re.search(C+P,File)):
#                        fr   = open(os.path.join(ZPath,File),'r')
#                        FMem = []
#                        for Line in fr.readlines():
#                            z = Line.strip().split()[0]
#                            if(z!='-1'):
#                                FMem.append(float(z))
#                            else:
#                                FMem.append(1.0)
#                        fr.close()
#                        FMem  = scipy.real(-scipy.log10(scipy.array(FMem)))
#                        ZZ.extend(list(FMem))
#                        del FMem
            Sign  = (ZZ  > (-scipy.log10(5.0e-8/float(46))))
            Sugg  = (ZZ >= (-scipy.log10(1.0e-6/float(46))))
            Sugg *= (ZZ <= (-scipy.log10(5.0e-8/float(46))))
#             Sign  = (ZZ  > (-scipy.log10(5.0e-8/float(14))))
#             Sugg  = (ZZ >= (-scipy.log10(1.0e-6/float(14))))
#             Sugg *= (ZZ <= (-scipy.log10(5.0e-8/float(14))))
#            Sign  = (ZZ  > (-scipy.log10(5.0e-8/float(Arguments.NPhe))))
#            Sugg  = (ZZ >= (-scipy.log10(1.0e-6/float(Arguments.NPhe))))
#            Sugg *= (ZZ <= (-scipy.log10(5.0e-8/float(Arguments.NPhe))))

#            ZSugg[PHE] = scipy.compress(Sugg,ZZ)
            ZSign[PHE] = scipy.compress(Sign,ZZ)
#            YSugg[PHE] = scipy.ones(len(ZSugg[PHE]))*(p+1)
            YSign[PHE] = scipy.ones(len(ZSign[PHE]))*(p+1)
#            XSugg[PHE] = scipy.compress(Sugg,X)
            XSign[PHE] = scipy.compress(Sign,X)
            Color[PHE] = scipy.compress(Sign,scipy.array(ColorList)).tolist()
            del ZZ
            LogString  = '** Parsed \"'+FName+'\" ...'
            print LogString
            Log.Write(LogString+'\n')

    #        del X
    #        del Y

        LogString = '**** Generating 3D-Manhattan plot ...'
        print LogString
        Log.Write(LogString+'\n')

##       Lay-out stuff
#        figwidth_pt   = 1422.0 # pt (from revtex \showthe\columnwidth)
#        inches_per_pt = 1.0/72.27
#        figwidth      = figwidth_pt*inches_per_pt
#        golden_mean   = (scipy.sqrt(5.0)-1.0)/2.0 # Aesthetic ratio
#        figheight     = figwidth*golden_mean
#        fig_size      = [figwidth,figheight]
#        params        = {'backend': 'pdf',
#                         'patch.antialiased': True,
#                         'axes.labelsize': 28,
#                         'axes.linewidth': 0.5,
#                         'grid.color': '0.75',
#                         'grid.linewidth': 0.25,
#                         'grid.linestyle': ':',
#                         'axes.axisbelow': False,
#                         'text.fontsize': 24,
#                         'legend.fontsize': 20,
#                         'xtick.labelsize': 22,
#                         'ytick.labelsize': 22,
#                         'text.usetex': True,
#                         'figure.figsize': fig_size}
#        left   = 0.06
#        bottom = 0.125
#        width  = 0.88-left
#        height = 0.95-bottom
#
#        pylab.rcParams.update(params)

        PylabFigure = pylab.figure()
        PylabFigure.clf()

#        Rectangle   = [left, bottom, width, height]
#        PylabAxis   = PylabFigure.add_axes(Rectangle)
        PylabAxis   = PylabFigure.add_subplot(111,projection='3d')
        if(Arguments.XProperty=='pos'):
            PylabAxis.set_xlabel('chromosome')
        if(Arguments.YProperty=='PHE'):
            PylabAxis.set_ylabel('metabolite')
        PylabAxis.set_zlabel('-log(p-value)')


#        for p in range(0,2):
#        for p in range(72,73):
        for p in range(Arguments.NPhe):
            if(p in NoPlotList):
                continue
            P  = 'PHE'+str(p+1)
#            if(len(ZSugg[P])>0):
#                PylabAxis.scatter(x=XSugg[P],
#                                  y=YSugg[P],
#                                  color='black',
#                                  s=ZSugg[P]/ZMax*100.0,
#                                  marker='s',
#                                  alpha=0.15,
#                                  antialiased=True,
#                                  edgecolors='none')

            if((ZSign.has_key(P)) and
               (len(ZSign[P])>0)):
#                XS.extend(XSign[P].tolist())
#                YS.extend(YSign[P].tolist())
#                ZS.extend(ZSign[P].tolist())
                PylabAxis.scatter(xs=XSign[P],
                                  ys=YSign[P],
                                  zs=ZSign[P],
#                                  zs=ZSign[P]/ZMax*100.0,
                                  color=Color[P],
                                  marker='o',
                                  alpha=0.5,
                                  antialiased=True,
                                  edgecolors='none')#,
#                                  label=r'$\rm '+Gene+r'$')
#                PylabAxis.scatter(xs=XSign[P],
#                                  ys=YSign[P],
#                                  zs=0.0,
#                                  color='black',
#                                  s=0.5,
#                                  marker='o',
#                                  alpha=0.25,
#                                  antialiased=True,
#                                  edgecolors='none')

#        XI   = scipy.linspace(min(XS),max(XS),endpoint=True,num=1000)
#        print len(XI)
#        YI   = scipy.linspace(min(YS),max(YS),num=163,endpoint=True)
#        print len(YI)
##        X, Y = scipy.meshgrid(XI,YI)
##        print len(X),
##        print len(Y)
#        Z = griddata(scipy.array(XS), scipy.array(YS), scipy.array(ZS), XI, YI)
#
#        PylabAxis.plot_surface(XI,
#                               YI,
#                               Z,
#                               rstride=8,
#                               cstride=8,
#                               alpha=0.3)
#        PylabAxis.plot_wireframe(XS,
#                               YS,
#                               ZS)
        PlotFile  = 'Manhattan3D.pdf'
        LogString = '**** Writing plot to \"'+PlotFile+'\" ...'
        print LogString
        Log.Write(LogString+'\n')
        XXRange  = float(XXMax)-float(XXMin)
        XXOffset = XXRange*0.005
        PylabAxis.set_xlim3d([float(XXMin)-XXOffset,float(XXMax)+XXOffset])
#        PylabAxis.set_ylim([0,YMax+2])
#        for Key,Value in ClassRange.iteritems():
#            PylabAxis.plot(scipy.array([float(XXMin)-XXOffset,float(XXMax)+XXOffset]),
#                           scipy.ones(2)*Value[0]-0.5,
#                           0.0,
#                           lw=0.25,
#                           color='black')
#            PylabAxis.plot(scipy.array([float(XXMin)-XXOffset,float(XXMax)+XXOffset]),
#                           scipy.ones(2)*Value[1]+0.5,
#                           0.0,
#                           lw=0.25,
#                           color='black')
#            PylabAxis.text(float(XXMax)+XXOffset,
#                           float(Value[0]+Value[1])*0.5,
#                           0.0,
#                           Key,
#                           verticalalignment='center')
#        for Entry in XLeft:
#            PylabAxis.plot(scipy.array([Entry,Entry]),
#                           scipy.array(PylabAxis.get_ylim()),
#                           lw=0.25,
#                           color='black')
#        for Entry in XRight:
#            PylabAxis.plot(scipy.array([Entry,Entry]),
#                           scipy.array(PylabAxis.get_ylim()),
#                           lw=0.25,
#                           color='black')
#
#        for p in range(Arguments.NPhe):
#            if(len(MInclude)>0):
#                if(MInclude[p]=='False'):
#                    PylabAxis.plot(scipy.array(PylabAxis.get_xlim()),
#                                   scipy.array([float(p+1),float(p+1)]),
#                                   color='blue',
#                                   ls='-',
#                                   lw=4.25,
#                                   alpha=0.125,
#                                   zorder=0)

#        PylabAxis.set_ylim([0,164])
#        PylabAxis.spines['right'].set_visible(False)
#        PylabAxis.spines['top'].set_visible(False)
#        PylabAxis.xaxis.set_ticks_position('bottom')
#        PylabAxis.yaxis.set_ticks_position('left')
#        PylabAxis.w_xaxis.set_ticks(XTicks)
#        YTicks      = PylabAxis.get_yticks()
#        YTickLabels = PylabAxis.get_yticklabels()
#        YTickLabels = list(YTickLabels)
#        for t in range(len(YTickLabels)):
#            YTickLabels[t] = ''
#        PylabAxis.w_yaxis.set_ticklabels(YTickLabels)
#        PylabAxis.w_yaxis.set_major_locator(ticker.FixedLocator(YTicks))
        print PylabAxis.w_xaxis.get_ticklabels()
        print len(PylabAxis.w_xaxis.get_ticklabels())
        print XTickLabels
        print len(XTickLabels)
        print XTicks
        print len(XTicks)
        Ticks = []
        for T in XTicks:
            Ticks.append(T)
        Labels = []
        for L in XTickLabels:
            Labels.append('')
        Labels[0]  = XTickLabels[0]
        Labels[9]  = XTickLabels[9]
        Labels[-1] = XTickLabels[-1]
#        for t in range(len(XTickLabels)):
#            XTickLabels[t] = ''
        PylabAxis.w_xaxis.set_ticklabels(Labels)
        PylabAxis.w_xaxis.set_major_locator(ticker.FixedLocator(Ticks))
        PylabAxis.set_zlim3d([0.0,ZMax+5.0])


#        PylabAxis.set_zlim3d([0.0,PylabAxis.get_zlim3d()[-1]])
#        ZTicks      = PylabAxis.zaxis.get_ticks()
#        ZTickLabels = PylabAxis.zaxis.get_ticklabels()
#        ZTickLabels = list(ZTickLabels)
#        for t in range(len(ZTickLabels)):
#            ZTickLabels[t] = r'${'+str(ZTickLabels[t])+r'}$'
#        PylabAxis.w_zaxis.set_ticklabels(ZTickLabels)
#        PylabAxis.w_zaxis.set_major_locator(ticker.FixedLocator(ZTicks))
#        for Label in PylabAxis.xaxis.get_ticklabels():
#            Label.set_rotation(90)
#        Handles,Labels = PylabAxis.get_legend_handles_labels()
#        PylabAxis.legend([Handles[0]],
#                         [Labels[0]],
#                         fancybox=True,
#                         shadow=True,
#                         loc='lower left',
#                         numpoints=1,
#                         scatterpoints=1)

#            pylab.savefig(re.sub('.pdf','_'+Gene+'.pdf',PlotFile))
#        pylab.savefig(PlotFile)
#        pylab.show()
#        pylab.close()
        angles = scipy.linspace(315,(315+360),201)[:-1] # A list of 20 angles between 0 and 360
        # create an animated gif (20ms between frames)
        rotanimate(PylabAxis, angles,'movie.gif',delay=20)
        # create a movie with 10 frames per seconds and 'quality' 2000
        rotanimate(PylabAxis, angles,'movie.mp4',fps=10,bitrate=2000)
#        # create an ogv movie
#        rotanimate(ax, angles, 'movie.ogv',fps=10)
#         create still of first snapshot
        rotanimate(PylabAxis, angles,'movie.pdf')
    else:
        print '!! NOT IMPLEMENTED YET !!'

    LogString = '**** Done :-)'
    print LogString
    Log.Write(LogString+'\n')
    LogString = Log.GetEndLogString()
    print LogString
    Log.Write(LogString+'\n')
    Log.Close()

    return