from dataset import * from wgan import * from generators import * from critics import * dataset = FacesData(img_size=64) # dataset = MNISTData() generator = ConvGenerator(img_size=dataset.img_size, channels=dataset.channels) critic = ConvCritic(img_size=dataset.img_size, channels=dataset.channels) wgan = WGAN(generator=generator, critic=critic, dataset=dataset, z_size=100) wgan(batch_size=8, steps=100000, model_path=project_path.model_path)
from dataset import * from wgan import * from generators import * from critics import * dataset = PianoRollData(img_size=(16, 128)) # dataset = MNISTData() generator = DCGANGenerator(img_size=dataset.img_size, channels=dataset.channels, prev_x=dataset.prev_x) critic = DCGANCritic(img_size=dataset.img_size, channels=dataset.channels, image=dataset.x) wgan = WGAN(generator=generator, critic=critic, dataset=dataset, epoches=100, z_size=100) wgan(batch_size=64, model_path=project_path.model_path)
import wgan import sys import os if (len(sys.argv) < 2): wgan = wgan.GAN() wgan(100000, 256, 1000) elif (len(sys.argv) == 5): if (sys.argv[1] == "load"): model_name = sys.argv[2] x = int(sys.argv[3]) y = int(sys.argv[4]) model = os.path.join("models", model_name) wgan = wgan.GAN() wgan.generate(model, x, y) elif (len(sys.argv) == 4): if (sys.argv[1] == "load"): model_name = sys.argv[2] x = int(sys.argv[3]) model = os.path.join("models", model_name) wgan = wgan.GAN() wgan.generate(model, x, 0)