def __init__(self, lexico, nomeArquivo): self.linha = 1 self.tokenAtual = None self.analisadorLexico = lexico self.tokenList = TokensClass.TokensClass() self.arquivo = Archive.Archive(nomeArquivo, None) self.listIdent = [] self.listTipo = [] self.listLinha = [] self.cont = 0 self.tipoAnterior = None
def _download(self, otr, remote_url=False): if not remote_url: remote_url = self._downloadqueue(otr, call.params['url']) xbmc.log('got remote download url <%s> %s' % (type(remote_url), remote_url)) if isinstance(remote_url, str) or isinstance(remote_url, unicode): archive = Archive.Archive() local_path = archive.downloadEpgidItem(call.params['epgid'], call.params['name'], remote_url) if local_path and __addon__.getSetting('otrAskPlayAfterDownload') == 'true': xbmc.executebuiltin("Container.Refresh") if xbmcgui.Dialog().yesno( __title__, _('download completed, play file now?'), str(remote_url.split('/').pop()) ): self._play(otr, local_path) return True
def _deleteLocalCopies(self, otr): if not __addon__.getSetting('otrAskDeleteLocal') == 'false': if not xbmcgui.Dialog().yesno( __title__, _('do you want do delete existing local copies?')): return False archive = Archive.Archive() if 'epgid' in call.params and call.params['epgid']: archive.deleteLocalEpgidPath(epgid=call.params['epgid']) elif 'file' in call.params and call.params['file']: archive.deleteLocalEpgidPath(file=call.params['file']) xbmc.executebuiltin("Container.Refresh") return True
def main () : population_size = 100 N = 10 k = 6 p = 0.99 lamda = [0,1,1] number_of_neighbors = 25 number_of_generation = 100 mut_prob = 1./N seed = 1000 landscape = Landscape.Landscape(N,k,seed,p) evolution = Evolution.Evolution(landscape,population_size, 1, number_of_neighbors,Archive.Archive(10,""), N) mth = ["None","N","R"] for i in range(3): print " =====================================================================" archive = Archive.Archive(10,mth[i]) evolution.archiving = archive #evolution.lamda = lamda[i] history = evolution.run(number_of_generation,mut_prob) maxs = [ ] for gen in history : values = [genotype.fitness for genotype in gen] maxs.append(numpy.max(values)) plt.plot(maxs, label=r"$method = $" +str(mth[i])) plt.xlabel("Generation") plt.ylabel("Max Fitness") plt.title("Novelty Vs Fitness") plt.legend(loc="lower right", shadow=True, fontsize='12') plt.show()
def read_from_file(filename): file = open(filename, "r") count = -1 ## Handle one input line at a time for line in file: info = line.strip().split("*") ## Outputs error if number of values read in is not 4 if len(info) != 4: print(info) print("Error: Incorrect number of inputs") file.close() return None movie = Movie(info[0].strip(), info[3].strip(), info[1].strip(), info[2].strip()) count += 1 ## Add movies to archive if count == 0: archive = Archive(movie) else: archive.addMovie(movie) file.close() return archive
def blocoPrincipal(codeFile, fileTable): # Para nao printar em um arquivo a tabela de simbolos: if fileTable == None: lexico = Lexico.Lexico() sintatico = Sintatico.Sintatico(lexico, codeFile) parser = sintatico.parser() # Para printar em um arquivo a tabela de simbolos: else: lexico = Lexico.Lexico() sintatico = Sintatico.Sintatico(lexico, codeFile) parser = sintatico.parser() tabela = Archive.Archive(None, fileTable) listReserv = [] aux = [] # Pega as palavras reservadas for r in lexico.reservadas: aux.append(r.split()) # Retira da string completa, so o que precisa: for i in aux: a = len(str(i)) -2 listReserv.append(str(i)[2:a]) # Manda criar a tabela: tabela.criaTabela(sintatico.listIdent,sintatico.listTipo,sintatico.listLinha, listReserv)
def adv_evolution_with_archiving(ref_ind, init_pop, number_of_generation, mut_probs, lamda, k, log_folder, mut_bp, archive_size): print(" Starting of evolution ") prev_population = numpy.copy(init_pop) #Initialize the population of RNA population_size = len(init_pop) n = number_of_generation logger = Logger.Logger(str(log_folder), str(lamda)) logger.save_population(init_pop, 0) maxfitness = max([ind.fitness for ind in prev_population]) archive = Archive.Archive(archive_size, "N") while (n > 0) and (maxfitness < 1): print('Generation ' + str(number_of_generation - n)) newgeneration = [] newgeneration = reproduce(prev_population, int(0.1 * population_size)) selected_ind = optimal_select_with_archving( numpy.insert(prev_population, len(prev_population), archive.archiving), population_size, lamda, k, log_folder, archive) newgeneration = numpy.insert( newgeneration, len(newgeneration), RNAEvolution.adv_mutateAll(ref_ind.RNA_structure, selected_ind, mut_probs, mut_bp)) prev_population = numpy.copy(newgeneration) maxfitness = max([ind.fitness for ind in prev_population]) n -= 1 print "Size of the archive =============== ", len(archive.archiving) logger.save_population(newgeneration, number_of_generation - n) return newgeneration
from flask import Flask, request, abort import simplejson as json import flask from collections import defaultdict import datetime import Archive import Query import urllib import req import redis_storage import parsconfig #config = {"size_stream" : 8000, "density" : 100} config = parsconfig.Config('/home/olga/projects/config.yaml') data_base = Archive.Archive(config.config) app = Flask(__name__) app.debug = True app.logger.debug('Значение для отладки') @app.route("/") def main(): return flask.redirect("/chunk") @app.route("/channels") def channels(): conn = data_base.conn channels = Archive.Channels_() table_channels = channels.GetChannels(data_base.conn)
def _refreshListing(self, otr): self.__login() archive = Archive.Archive() archive.refresh(otr) xbmc.executebuiltin("Container.Refresh")
def _createRecordingList(self, otr): """ wrapper um createList fuer recordings aufzurufen @param otr: OtrHandler @type otr: OtrHandler Instanz """ def get_recording_list_item(archive, recording): li = xbmcgui.ListItem( recording['label'], recording['filename'], archive.getImageUrl(recording['epgid'], recording['icon_image']), archive.getImageUrl(recording['epgid'], recording['thumbnail_image']) ) contextmenueitems = [tuple(( _('delete local copies'), "XBMC.RunPlugin(\"%s\")" % call.format('/deletelocalcopies', params={'epgid': recording['epgid']}) )), tuple(( _('delete'), "XBMC.RunPlugin(\"%s\")" % call.format('/deletejob', params={'epgid': recording['epgid']}) )), tuple(( _('refresh listing'), "XBMC.RunPlugin(\"%s\")" % call.format('/refreshlisting', params={'epgid': recording['epgid']}) )), tuple(( _('userinfo'), "XBMC.RunPlugin(\"%s\")" % call.format('/userinfo') ))] li.addContextMenuItems(contextmenueitems, replaceItems=True ) infos = dict( filter( lambda r: r[0] in ['duration', 'title', 'studio', 'date', 'plot'], recording.items() ) ) li.setInfo('video', infos) return [ call.format(params={ 'epgid': recording['epgid'] }), li, True ] def get_recordingstreams_list_item(archive, recording): if not 'streams' in recording: return list = recording['streams'].keys() list.sort() for stream in list: li = xbmcgui.ListItem( "%s %s" % (_('stream:'), recording['streams'][stream]['name']), recording['streams'][stream]['type'], archive.getImageUrl(recording['epgid'], recording['icon_image']), archive.getImageUrl(recording['epgid'], recording['thumbnail_image']) ) contextmenueitems = [] contextmenueitems.append( tuple(( _('play'), "PlayWith()" ))) if 'copies' in recording: if not str(recording['streams'][stream]['file'].split('/').pop()) in recording['copies']: contextmenueitems.append( tuple(( _('download'), "XBMC.RunPlugin(\"%s\")" % call.format('/download', params={ 'url': recording['streams'][stream]['file'], 'epgid': recording['epgid'], 'name': recording['streams'][stream]['name'] }) )) ) contextmenueitems.append( tuple(( _('userinfo'), "XBMC.RunPlugin(\"%s\")" % call.format('/userinfo') )) ) li.addContextMenuItems(contextmenueitems, replaceItems=True ) yield [ call.format('/play', params={ 'url': recording['streams'][stream]['file'], 'epgid': recording['epgid']}), li, False, ] def get_recordingcopies_list_item(archive, recording): if not 'copies' in recording: return for copy in recording['copies'].keys(): li = xbmcgui.ListItem( "%s %s" % (_('local copy:'), recording['copies'][copy]['name']), '', archive.getImageUrl(recording['epgid'], recording['icon_image']), archive.getImageUrl(recording['epgid'], recording['thumbnail_image']) ) contextmenueitems = [tuple(( _('play'), "PlayWith()" )), tuple(( _('delete'), "XBMC.RunPlugin(\"%s\")" % call.format('/deletelocalcopies', params={'file': recording['copies'][copy]['file']}) )), tuple(( _('userinfo'), "XBMC.RunPlugin(\"%s\")" % call.format('/userinfo') ))] li.addContextMenuItems(contextmenueitems, replaceItems=True ) yield [ recording['copies'][copy]['file'], li, False, ] listing = list() archive = Archive.Archive() archive.load() print "last: %s" % archive.LastFile(archive).last() if archive.LastFile(archive).last() < 0 or archive.LastFile(archive).last() > 900: self.__login() archive.refresh(otr) archive.load() if not 'epgid' in call.params: for epgid in archive.recordings: listing.append(get_recording_list_item(archive, archive.recordings[epgid])) else: epgid = call.params['epgid'] for stream in get_recordingstreams_list_item(archive, archive.recordings[epgid]): listing.append(stream) for stream in get_recordingcopies_list_item(archive, archive.recordings[epgid]): listing.append(stream) return listing
def __init__(self, max_iterations, evaluations): """ objective_functions: objective function array bounds: Bounds array (bounds for each objective value) objective_types: array of objective type (min or max) num_particles: Array of the number of particles for each swarm max_iterations: Number of iterations dimensions: Number of dimensions (length of particle position vector) """ best_swarm_global_fitness_values = [] # best error for group swarm_gbest_positions = [] # best position for group evaluations = evaluations objective_functions = evaluations.get_objective_functions() num_particles = evaluations.get_num_particles() archive = Archive.Archive(sum(num_particles), evaluations) constants = evaluations.get_constants() objective_types = evaluations.get_objective_types() dimensions = evaluations.get_num_dimensions() bounds = evaluations.get_bounds() for objective_index in range(len(objective_functions)): if objective_types[objective_index] == "min": best_swarm_global_fitness_values.append(float('inf')) else: best_swarm_global_fitness_values.append(float('-inf')) swarm_gbest_positions.append([]) # for each objective make a swarm swarms = [] for objective_index in range(len(objective_functions)): # establish the swarm swarm = [] for particle in range(0, num_particles[objective_index]): swarm.append( Particle.Particle(dimensions, objective_types[objective_index], bounds, constants[0], constants[1], constants[2], constants[3])) swarms.append(copy.deepcopy(swarm)) # begin optimization loop iteration = 0 while iteration < max_iterations: print("iteration: " + str(iteration)) for objective_index in range(len(objective_functions)): # cycle through particles in objective swarm and evaluate fitness for particle_index in range(0, num_particles[objective_index]): swarms[objective_index][particle_index].evaluate( objective_functions[objective_index]) # check to see if the current position is an individual best if (objective_types[objective_index] == "min" and swarms[objective_index][particle_index].fitness_function_value < swarms[objective_index][particle_index].best_fitness_value) \ or (objective_types[objective_index] == "max" and swarms[objective_index][particle_index].fitness_function_value > swarms[objective_index][particle_index].best_fitness_value) \ or swarms[objective_index][particle_index].best_fitness_value == -1: swarms[objective_index][ particle_index].pbest_position_indexes = copy.deepcopy( swarms[objective_index] [particle_index].position_indexes) swarms[objective_index][ particle_index].best_fitness_value = float( swarms[objective_index] [particle_index].fitness_function_value) # determine if current particle is the best (globally) in its swarm if (objective_types[objective_index] == "min" and swarms[objective_index][particle_index].best_fitness_value < best_swarm_global_fitness_values[objective_index])\ or (objective_types[objective_index] == "max" and swarms[objective_index][particle_index].best_fitness_value > best_swarm_global_fitness_values[objective_index])\ or best_swarm_global_fitness_values[objective_index] == -1: swarm_gbest_positions[objective_index] = copy.deepcopy( swarms[objective_index] [particle_index].pbest_position_indexes) best_swarm_global_fitness_values[ objective_index] = float( swarms[objective_index] [particle_index].best_fitness_value) # update the archive with the solution archive.add_to_archive( swarms[objective_index][particle_index]) # for each objective for objective_index in range(len(objective_functions)): # cycle through swarm and update velocities and position for particle_index in range(0, num_particles[objective_index]): # get the guide particle guide_particle = archive.get_guide() swarms[objective_index][particle_index].update_velocity( swarm_gbest_positions[objective_index], guide_particle) swarms[objective_index][particle_index].update_position() iteration += 1 # print final results print('FINAL:')
def OpenFile(self, e): dlg = wx.FileDialog(self, message="Open an EMTG file", defaultDir=self.dirname, defaultFile="", wildcard="*.emtgopt;*.emtg_universe;*.emtg;", style=wx.FD_OPEN) if dlg.ShowModal() == wx.ID_OK: self.filename = dlg.GetFilename() self.dirname = dlg.GetDirectory() fileparts = self.filename.split(".") #before we actually open the new file, we need to clear memory associated with whatever file we currently have open if self.mode == "options": self.missionoptions = [] self.optionsnotebook.Destroy() elif self.mode == "mission": self.mission = [] self.missionpanel.Destroy() elif self.mode == "universe": self.universe = [] self.universenotebook.Destroy() elif self.mode == "archive": self.archive = [] self.archivepanel.Destroy() self.mode = "" #next open the new file if fileparts[1] == "emtgopt": import sys import inspect currentdir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) sys.path.append(currentdir + "/" + 'Converters') from Convert_emtgopt_v1_to_v2 import Convert_emtgopt_v1_to_v2 self.missionoptions = Convert_emtgopt_v1_to_v2( os.path.join(self.dirname, self.filename)) if self.missionoptions.success == 1: self.mode = "options" self.lblWelcome.Show(False) self.InitializeMissionOptionsEditor() self.fileMenu.Enable(wx.ID_SAVE, True) self.fileMenu.Enable(wx.ID_EDIT, True) elif fileparts[1] == "emtg": self.mission = Mission.Mission( os.path.join(self.dirname, self.filename)) if self.mission.success == 1: self.mode = "mission" self.lblWelcome.Show(False) self.missionpanel = MissionPanel.MissionPanel( self, self.mission) self.missionpanel.SetSize(self.GetSize()) self.fileMenu.Enable(wx.ID_EDIT, True) elif fileparts[1] == "emtg_universe": self.universe = Universe.Universe( os.path.join(self.dirname, self.filename)) if self.universe.success == 1: self.mode = "universe" self.lblWelcome.Show(False) self.InitializeUniverseOptionsEditor() self.fileMenu.Enable(wx.ID_SAVE, True) self.fileMenu.Enable(wx.ID_EDIT, True) elif fileparts[1] == "emtg_archive": self.archive = Archive.Archive( os.path.join(self.dirname, self.filename)) if self.archive.success == 1: self.mode = "archive" self.lblWelcome.Show(False) self.InitializeArchiveProcessor() self.fileMenu.Enable(wx.ID_EDIT, True) self.fileMenu.Enable(wx.ID_SAVE, False) else: errordlg = wx.MessageDialog(self, "Unrecognized file type.", "EMTG Error", wx.OK) errordlg.ShowModal() errordlg.Destroy() dlg.Destroy()