示例#1
0
def V_twiddle_sq_R(k_vector):
    k = AS.k_mag(k_vector)
    #q_vector = np.asarray(kprime_vector)- np.asarray(k_vector)
    #calculate the angle of incidence
    inc = acos(k_vector[0] / (k))
    vs_new = v_sound(inc)
    # k will cancel out
    return abs(hbar * (vs_new - vs) / (2 * math.pi))**2
示例#2
0
def Gamma(k_vector, vg):
    return Gamma_GBS(k_vector, AS.kprimes_y(k_vector, D), vg, n_1D,
                     D) * 1E-9  #what's this function for?
示例#3
0
def Gamma_GBS(k_vector, kprime_vectors, vg, n_1D, D):
    return AS.GammaArray(k_vector, kprime_vectors, V1_twiddle_sq_Delta, vg, n_1D, D, 1) \
           + AS.GammaArray(k_vector, kprime_vectors, V1_twiddle_sq_S, vg, n_1D, D, 1)\
           + AS.GammaArray(k_vector, kprime_vectors, V1_twiddle_sq_R, vg, n_1D, D, 1)
示例#4
0
def V1_twiddle_sq_R(k_vector, kprime_vector):
    k = AS.k_mag(k_vector)
    q_vector = np.asarray(kprime_vector) - np.asarray(k_vector)
    return abs(AS.hbar * omega_k(k_vector) * gamma(k_vector) * \
               b * ((2 * q_vector[0]) / (q_vector[0]**2 + q_vector[1]**2)))**2
示例#5
0
def V1_twiddle_sq_S(k_vector, kprime_vector):
    k = AS.k_mag(k_vector)
    q_vector = np.asarray(kprime_vector) - np.asarray(k_vector)
    return abs(AS.hbar * omega_k(k_vector) * gamma(k_vector) * \
               (b / (1 - nu)) * ((q_vector[0] * q_vector[1]**2)\
               / (q_vector[0]**2 + q_vector[1]**2)**2)) ** 2
示例#6
0
def V1_twiddle_sq_Delta(k_vector, kprime_vector):
    k = AS.k_mag(k_vector)
    q_vector = np.asarray(kprime_vector) - np.asarray(k_vector)
    return abs(AS.hbar * omega_k(k_vector) * gamma(k_vector) * \
               ((b * (1 - 2 * nu)) / (1 - nu)) * (q_vector[1]\
               / (q_vector[0]**2 + q_vector[1]**2)))**2
示例#7
0
def omega_k(k_vector):
    k = AS.k_mag(k_vector)
    return vs * k
示例#8
0
omega_list = []
vg_list = []
tau_list = []
trans_list = []
tbc_list = []
kappa_list = []

#%% Spectral plots

T = 300
for k in k_mags:
    omega_list.append(
        omega_k([k, 0, 0])
    )  # omega and vg are supposed to be only a function of k, not k_vector. This is tacky and needs to be fixed!
    vg_list.append(vg_k([k, 0, 0]))
    tau_list.append(AS.tau_spectral(Gamma, k, vg_k, 50))
    trans_list.append(AS.transmissivity(k, vg_k, n_1D, Gamma, 50))
    tbc_list.append(AS.tbc_spectral(k, vg_k, omega_k, T, Gamma, n_1D, 50))
    kappa_list.append(AS.kL_spectral(Gamma, k, vg_k, omega_k, T, 50))
#
#
plt.figure()
plt.xlabel(r'$k \; \mathrm{(m^{-1})}$', fontsize=16)
plt.ylabel(r'$\tau \; \mathrm{(ns)}$', fontsize=16)
plt.plot(k_mags, tau_list)
plt.savefig('tiltBoundary_D1e-9_2.pdf', dpi=400, bbox_inches='tight')
plt.show(block=False)
#
#plt.figure()
#plt.xlabel(r'$k \; \mathrm{(m^{-1}}$')
#plt.ylabel(r'$t$')
示例#9
0
def Vn_twiddle_sq_E13(k_vector, kprime_vector):
    k = AS.k_mag(k_vector)
    q_vector = np.asarray(kprime_vector) - np.asarray(k_vector)
    return abs(hbar * omega_k(k_vector) * gamma(k) * (b * q_vector[1]) /
               (2 * (q_vector[0]**2 + q_vector[1]**2)))**2
示例#10
0
def omega_k(k_vector):
    if np.size(k_vector) > 1:
        k = AS.k_mag(k_vector)
    else:
        k = k_vector
    return vs * k
示例#11
0
def Gamma_rot(k_vector, vg):
    return Gamma_GBS_rot(k_vector, AS.kprimes_y(k_vector, D),
                         AS.kprimes_z(k_vector, D), vg, n_1D, D) * 1E-9
示例#12
0
def Gamma_GBS_rot(k_vector, kprime_yvectors, kprime_zvectors, vg, n_1D, D):
    return AS.GammaArray(k_vector, kprime_yvectors, V_twiddle_sq_n, vg, n_1D, D, 1) \
           + AS.GammaArray(k_vector, kprime_zvectors, V_twiddle_sq_m, vg, n_1D, D, 2) \
           + V_twiddle_sq_R(k_vector)
示例#13
0
# plt.show(block=False)

#%%
# Calculation of spectral tau and kappa
omega_list = []
vg_list = []
tau_list = []
kappa_list = []
trans_list = []
T = 300
for k in k_mags:
    omega_list.append(
        omega_k([k, 0, 0])
    )  # omega and vg are supposed to be only a function of k, not k_vector. This is tacky and needs to be fixed!
    vg_list.append(vg_k([k, 0, 0]))
    tau_list.append(AS.tau_spectral(Gamma_rot, k, vg_k, 50))
    trans_list.append(AS.transmissivity(k, vg_k, n_1D, Gamma_rot, 50))
    #kappa_list.append(AS.kL_spectral(Gamma_rot, k, vg_k, omega_k, T, 50))

plt.figure()
plt.xlabel(r'$k \; \mathrm{(m^{-1})}$', fontsize=16)
plt.ylabel(r'$\tau \; \mathrm{(ns)}$', fontsize=16)
plt.plot(k_mags, tau_list)
plt.savefig('twistBoundary_D1e-9.pdf', dpi=400, bbox_inches='tight')
plt.show(block=False)

#plt.figure
#plt.xlabel(r'$k \; \mathrm{(m^{-1})}$', fontsize=16)
#plt.ylabel(r'$\kappa_\mathrm{L} \; \mathrm{(W/m/K)}$', fontsize=16)
#plt.plot(k_mags, kappa_list)
#plt.savefig('twistKappa_D1e-9.pdf', dpi=400, bbox_inches = 'tight')