示例#1
0
# to avoid confusion
vol_frac_goal = np.double(vol_frac_goal)
L = np.double(L)
M = np.int(M)
mc_steps = np.int(mc_steps)
kBT = np.double(kBT)
nr_tries = np.int(nr_tries)

trunc_triangles = ccb.prepare_triangles(1.0, L) # Using 1.0 instead of vol_frac_goal in order to obtain enough inputs.
#ccb.optimize_midpoints(L, trunc_triangles)

with open('trunc_triangles_0.data', 'wb') as f:
	pickle.dump(L, f, pickle.HIGHEST_PROTOCOL)
	pickle.dump(trunc_triangles, f, pickle.HIGHEST_PROTOCOL)

grain_ids_0, overlaps_0, voxel_indices_0 = ccb_c.populate_voxels(M, L, trunc_triangles, nr_tries, delta, vol_frac_goal)

phases_0, good_voxels_0, euler_angles_0, phase_volumes_0, grain_volumes_0 = ccb_c.calc_grain_prop(M, grain_ids_0, trunc_triangles)
surface_voxels_0, gb_voxels_0, interface_voxels_0 = ccb_c.calc_surface_prop(M, grain_ids_0)

vol_frac_WC_0 = phase_volumes_0[1]/np.float(np.sum(phase_volumes_0))
vol_frac_Co_0 = 1 - vol_frac_WC_0
mass_frac_WC_0 = ccb.mass_fraction(vol_frac_WC_0)
d_eq_0 = ccb.volume_to_eq_d(grain_volumes_0*delta_x**3)

sum_gb_voxels_0 = np.sum(gb_voxels_0)
contiguity_0 = sum_gb_voxels_0 / np.float(sum_gb_voxels_0 + np.sum(interface_voxels_0))

ccb.write_hdf5('testfile_0.hdf5', 3*[M], 3*[delta_x], trunc_triangles, grain_ids_0, phases_0, good_voxels_0, euler_angles_0, surface_voxels_0, gb_voxels_0, interface_voxels_0, overlaps_0)

# Compute actual volume fraction:
示例#2
0
trunc_triangles = ccb.prepare_triangles(vol_frac_goal, L, r, k, d_eq)
# Sort triangles w.r.t. volume, so that large triangles are added to the box first (better packing)
trunc_triangles.sort(key=lambda m: m.volume, reverse=True)

if use_potential:
    ccb.optimize_midpoints(L, trunc_triangles)

print('Prepared', len(trunc_triangles), 'triangles')

with open('trunc_triangles_0.data', 'wb') as f:
    pickle.dump(L, f, pickle.HIGHEST_PROTOCOL)
    pickle.dump(trunc_triangles, f, pickle.HIGHEST_PROTOCOL)

if m_coarse == m:
    grain_ids_0, overlaps_0, voxel_indices_0 = ccb_c.populate_voxels(M, L, trunc_triangles, nr_tries, M, 1.0)
else:
    if nr_tries > 0:
        # Optimization: Use coarser grid for packing, then insert packed grains into fine grid
        grain_ids_coarse_0, overlaps_coarse_0, voxel_indices_coarse_0 = ccb_c.populate_voxels(M_coarse, L, trunc_triangles, nr_tries, M_coarse, 1.0)
    grain_ids_0, overlaps_0, voxel_indices_0 = ccb_c.populate_voxels(M, L, trunc_triangles, 1, 0,  1.0)

phases_0, good_voxels_0, euler_angles_0, phase_volumes_0, grain_volumes_0 = ccb_c.calc_grain_prop(M, grain_ids_0, trunc_triangles)
surface_voxels_0, gb_voxels_0, interface_voxels_0 = ccb_c.calc_surface_prop(M, grain_ids_0)

vol_frac_WC_0 = phase_volumes_0[1]/np.float(np.sum(phase_volumes_0))
vol_frac_Co_0 = 1 - vol_frac_WC_0
mass_frac_WC_0 = ccb.mass_fraction(vol_frac_WC_0)
d_eq_0 = ccb.volume_to_eq_d(grain_volumes_0*delta_x**3)
sum_gb_voxels_0 = np.sum(gb_voxels_0)
contiguity_0 = sum_gb_voxels_0 / np.float(sum_gb_voxels_0 + np.sum(interface_voxels_0))