def __init__(self, mode, max_epochs, batch_size, n_classes, train_records, valid_records, im_sz, init_lr, keep_prob, logs_dir): FCNNet.__init__(self, mode, max_epochs, batch_size, n_classes, train_records, valid_records, im_sz, init_lr, keep_prob, logs_dir) self.cur_batch_size = tf.placeholder(dtype=tf.int32, name='cur_batch_size') #mask self.seq_num = cfgs.seq_num self.cur_channel = cfgs.cur_channel self.channel = self.cur_channel + self.seq_num self.inference_name = 'inference' self.images = tf.placeholder(tf.float32, shape=[ None, self.IMAGE_SIZE[0], self.IMAGE_SIZE[1], cfgs.seq_num + self.cur_channel ], name='input_image') self.create_view_path() accu.create_ellipse_f() self.e_acc = accu.Ellip_acc()
def __init__(self, mode, max_epochs, batch_size, n_classes, train_records, valid_records, im_sz, init_lr, keep_prob, logs_dir): FCNNet.__init__(self, mode, max_epochs, batch_size, n_classes, train_records, valid_records, im_sz, init_lr, keep_prob, logs_dir) #mask self.seq_num = cfgs.seq_num self.cur_channel = cfgs.cur_channel self.channel = 3+self.seq_num self.inference_name = 'soft_infer' self.images = tf.placeholder(tf.float32, shape=[None, self.IMAGE_SIZE, self.IMAGE_SIZE, cfgs.seq_num+self.cur_channel], name='input_image') accu.create_ellipse_f()
def __init__(self, mode, max_epochs, batch_size, n_classes, train_records, valid_records, im_sz, init_lr, keep_prob, logs_dir): FCNNet.__init__(self, mode, max_epochs, batch_size, n_classes, train_records, valid_records, im_sz, init_lr, keep_prob, logs_dir) #mask self.seq_num = cfgs.seq_num self.cur_channel = cfgs.cur_channel self.channel = self.cur_channel + self.seq_num self.inference_name = 'inference' self.images = tf.placeholder(tf.float32, shape=[ None, self.IMAGE_SIZE[0], self.IMAGE_SIZE[1], cfgs.seq_num + self.cur_channel ], name='input_image') self.grad_ims = tf.placeholder( tf.float32, shape=[None, self.IMAGE_SIZE[0], self.IMAGE_SIZE[1], 1], name='grad_image') self.create_view_path() self.coord_map_x, self.coord_map_y = self.generate_coord_map( self.batch_size) self.coord_x_tensor = tf.placeholder( tf.float32, shape=[None, self.IMAGE_SIZE[0], self.IMAGE_SIZE[1]], name='coord_x_map_tensor') self.coord_y_tensor = tf.placeholder( tf.float32, shape=[None, self.IMAGE_SIZE[0], self.IMAGE_SIZE[1]], name='coord_y_map_tensor') self.ellip_low = tf.placeholder(tf.float32, shape=[None], name='ellipse_info_lower_axis') self.ellip_high = tf.placeholder(tf.float32, shape=[None], name='ellipse_info_higher_axis') self.ellip_axis = tf.placeholder(tf.float32, shape=[None], name='ellipse_info_mean_axis') accu.create_ellipse_f() self.e_acc = accu.Ellip_acc()
def __init__(self, mode, max_epochs, batch_size, n_classes, train_records, valid_records, im_sz, init_lr, keep_prob, logs_dir): FCNNet.__init__(self, mode, max_epochs, batch_size, n_classes, train_records, valid_records, im_sz, init_lr, keep_prob, logs_dir) #seq_mask(short for sm) self.seq_num = cfgs.seq_num self.cur_channel = cfgs.cur_channel self.sm_channel = self.cur_channel + self.seq_num self.sm_infer_name = 'inference' self.sm_images = tf.placeholder(tf.float32, shape=[ None, self.IMAGE_SIZE, self.IMAGE_SIZE, cfgs.seq_num + self.cur_channel ], name='seq_mask_input_image') self.sm_annos = tf.placeholder(tf.int32, shape=[ None, self.IMAGE_SIZE, self.IMAGE_SIZE, cfgs.seq_mask_anno_channel ], name='seq_mask_annos') #soft self.soft_infer_name = 'soft_infer' self.soft_channel = 3 self.soft_anno_channel = cfgs.soft_anno_channel self.soft_images = tf.placeholder( tf.float32, shape=[None, self.IMAGE_SIZE, self.IMAGE_SIZE, self.soft_channel], name='soft_input_images') self.soft_annos = tf.placeholder(tf.float32, shape=[ None, self.IMAGE_SIZE, self.IMAGE_SIZE, self.soft_anno_channel ], name='soft_annos') accu.create_ellipse_f() self.create_view_f() self.e_acc = accu.Ellip_acc()