示例#1
0
    def __init__(self, mode, max_epochs, batch_size, n_classes, train_records,
                 valid_records, im_sz, init_lr, keep_prob, logs_dir):

        FCNNet.__init__(self, mode, max_epochs, batch_size, n_classes,
                        train_records, valid_records, im_sz, init_lr,
                        keep_prob, logs_dir)

        self.cur_batch_size = tf.placeholder(dtype=tf.int32,
                                             name='cur_batch_size')
        #mask
        self.seq_num = cfgs.seq_num
        self.cur_channel = cfgs.cur_channel
        self.channel = self.cur_channel + self.seq_num
        self.inference_name = 'inference'
        self.images = tf.placeholder(tf.float32,
                                     shape=[
                                         None, self.IMAGE_SIZE[0],
                                         self.IMAGE_SIZE[1],
                                         cfgs.seq_num + self.cur_channel
                                     ],
                                     name='input_image')
        self.create_view_path()

        accu.create_ellipse_f()
        self.e_acc = accu.Ellip_acc()
示例#2
0
    def __init__(self, mode, max_epochs, batch_size, n_classes, train_records, valid_records, im_sz, init_lr, keep_prob, logs_dir):

        FCNNet.__init__(self, mode, max_epochs, batch_size, n_classes, train_records, valid_records, im_sz, init_lr, keep_prob, logs_dir)

        #mask
        self.seq_num = cfgs.seq_num
        self.cur_channel = cfgs.cur_channel
        self.channel = 3+self.seq_num
        self.inference_name = 'soft_infer'
        self.images = tf.placeholder(tf.float32, shape=[None, self.IMAGE_SIZE, self.IMAGE_SIZE, cfgs.seq_num+self.cur_channel], name='input_image')
        accu.create_ellipse_f()
    def __init__(self, mode, max_epochs, batch_size, n_classes, train_records,
                 valid_records, im_sz, init_lr, keep_prob, logs_dir):

        FCNNet.__init__(self, mode, max_epochs, batch_size, n_classes,
                        train_records, valid_records, im_sz, init_lr,
                        keep_prob, logs_dir)

        #mask
        self.seq_num = cfgs.seq_num
        self.cur_channel = cfgs.cur_channel
        self.channel = self.cur_channel + self.seq_num
        self.inference_name = 'inference'
        self.images = tf.placeholder(tf.float32,
                                     shape=[
                                         None, self.IMAGE_SIZE[0],
                                         self.IMAGE_SIZE[1],
                                         cfgs.seq_num + self.cur_channel
                                     ],
                                     name='input_image')
        self.grad_ims = tf.placeholder(
            tf.float32,
            shape=[None, self.IMAGE_SIZE[0], self.IMAGE_SIZE[1], 1],
            name='grad_image')

        self.create_view_path()
        self.coord_map_x, self.coord_map_y = self.generate_coord_map(
            self.batch_size)
        self.coord_x_tensor = tf.placeholder(
            tf.float32,
            shape=[None, self.IMAGE_SIZE[0], self.IMAGE_SIZE[1]],
            name='coord_x_map_tensor')
        self.coord_y_tensor = tf.placeholder(
            tf.float32,
            shape=[None, self.IMAGE_SIZE[0], self.IMAGE_SIZE[1]],
            name='coord_y_map_tensor')

        self.ellip_low = tf.placeholder(tf.float32,
                                        shape=[None],
                                        name='ellipse_info_lower_axis')
        self.ellip_high = tf.placeholder(tf.float32,
                                         shape=[None],
                                         name='ellipse_info_higher_axis')
        self.ellip_axis = tf.placeholder(tf.float32,
                                         shape=[None],
                                         name='ellipse_info_mean_axis')

        accu.create_ellipse_f()
        self.e_acc = accu.Ellip_acc()
示例#4
0
    def __init__(self, mode, max_epochs, batch_size, n_classes, train_records,
                 valid_records, im_sz, init_lr, keep_prob, logs_dir):

        FCNNet.__init__(self, mode, max_epochs, batch_size, n_classes,
                        train_records, valid_records, im_sz, init_lr,
                        keep_prob, logs_dir)

        #seq_mask(short for sm)
        self.seq_num = cfgs.seq_num
        self.cur_channel = cfgs.cur_channel
        self.sm_channel = self.cur_channel + self.seq_num
        self.sm_infer_name = 'inference'
        self.sm_images = tf.placeholder(tf.float32,
                                        shape=[
                                            None, self.IMAGE_SIZE,
                                            self.IMAGE_SIZE,
                                            cfgs.seq_num + self.cur_channel
                                        ],
                                        name='seq_mask_input_image')
        self.sm_annos = tf.placeholder(tf.int32,
                                       shape=[
                                           None, self.IMAGE_SIZE,
                                           self.IMAGE_SIZE,
                                           cfgs.seq_mask_anno_channel
                                       ],
                                       name='seq_mask_annos')
        #soft
        self.soft_infer_name = 'soft_infer'
        self.soft_channel = 3
        self.soft_anno_channel = cfgs.soft_anno_channel
        self.soft_images = tf.placeholder(
            tf.float32,
            shape=[None, self.IMAGE_SIZE, self.IMAGE_SIZE, self.soft_channel],
            name='soft_input_images')
        self.soft_annos = tf.placeholder(tf.float32,
                                         shape=[
                                             None, self.IMAGE_SIZE,
                                             self.IMAGE_SIZE,
                                             self.soft_anno_channel
                                         ],
                                         name='soft_annos')

        accu.create_ellipse_f()
        self.create_view_f()
        self.e_acc = accu.Ellip_acc()