def paintParameterLine(parameterLine, width, height, img):
    #PAINTPARAMETERLINE Paint parameterized line
    #   parameterLine: [n1,n2,n3,planeID,u1,u2], first 3 dims are normal
    #   direction, 4th dim is the base plane ID for U (1=XY), 5-6th dims are U
    #   of start and end point.
    #   width, height: the size of output panorama, width = height x 2
    #   img: the image on which lines will be drawn. If no img,
    #   img=zeros(height,width).
    lines = parameterLine

    if img is None:
        panoEdgeC = np.zeros([height, width])
    else:
        img = np.double(img)
        panoEdgeC = imresize(img, [height, width])
        if img.shape[2] == 3:

            pimg = PIL.Image.fromarray(np.uint8(panoEdgeC))
            panoEdgeC = pimg.convert('L')

            panoEdgeC = np.array(panoEdgeC) * 0.5

    # valid = true(size(lines,1),1);
    # uv_vp = xyz2vp([vp;-vp]);
    # vpm = min(floor( (uv_vp(:,1)-(-pi)) /(2*pi)*width)+1, width);
    # vpn = min(floor( ((pi/2)-uv_vp(:,2))/(pi)*height )+1, height);
    # valid = lines(:,4)==1;
    # lines = lines(~valid,:); #horizontal
    # lines = lines(valid,:); #vertical
    num_sample = max(height, width)
    for i in np.arange(lines.shape[0]):
        #     fprintf('#d\n',i);
        n = lines[i, 0:3]
        sid = lines[i, 4] * 2 * np.pi
        eid = lines[i, 5] * 2 * np.pi
        if eid < sid:
            x = np.linspace(sid, eid + 2 * np.pi, num_sample)
            x = x % (2 * np.pi)
    #         x = sid-1:(eid-1+numBins);
    #         x = rem(x,numBins) + 1;
        else:
            x = np.linspace(sid, eid, num_sample)

    #     u = -pi + (x'-1)*uBinSize + uBinSize/2;
        u = -np.pi + x.T
        v = CoordsTransform.computeUVN(n, u, lines[i, 3])
        xyz = CoordsTransform.uv2xyzN(np.column_stack((u, v)), lines[i, 3])
        uv = CoordsTransform.xyz2uvN(xyz, 0)

        uv = uv.T

        m = np.minimum(np.floor((uv[:, 0] - (-np.pi)) / (2 * np.pi) * width),
                       width - 1)
        n = np.minimum(np.floor(((np.pi / 2) - uv[:, 1]) / (np.pi) * height),
                       height - 1)
        #drawId = sub2ind([height, width], n, m);

        panoEdgeC[np.int32(n), np.int32(m)] = 255

    return panoEdgeC
def lineFromTwoPoint( pt1, pt2 ):
    #LINEFROMTWOPOINT Generate line segment based on two points on panorama
    #   pt1, pt2: two points on panorama
    #   lines: 
    #       1~3-th dim: normal of the line
    #       4-th dim: the projection dimension ID
    #       5~6-th dim: the u of line segment endpoints in projection plane
    #   use paintParameterLine to visualize

    numLine =  pt1.shape[0];
    lines = np.zeros([numLine, 6]);
    n = np.cross( pt1, pt2);
    n = n/repmat( np.sqrt(np.sum(n**2,1)), 3, 1).T;
    lines[:,0:3] = n;

    areaXY = np.abs(np.sum(n*repmat(np.array([0 ,0 ,1]), numLine, 1),1));
    areaYZ = np.abs(np.sum(n*repmat(np.array([1, 0, 0]), numLine, 1),1));
    areaZX = np.abs(np.sum(n*repmat(np.array([0, 1, 0]), numLine, 1),1));
    planeIDs = np.argmax(np.array([areaXY, areaYZ, areaZX]),0); # 1:XY 2:YZ 3:ZX
    lines[:,3] = planeIDs;

    for i in np.arange(numLine):
        uv = CoordsTransform.xyz2uvN(np.array([pt1[i,:], pt2[i,:]]), lines[i,3]).T;
        umax = np.max(uv[:, 0])+np.pi;
        umin = np.min(uv[:,0])+np.pi;
        if umax-umin>np.pi:
            lines[i,4:6] = np.array([umax, umin])/2/np.pi;
        else:
            lines[i,4:6] = np.array([umin ,umax])/2/np.pi;
        
   

    return  lines 
def rotatePanorama(img, vp, R):
    #ROTATEPANORAMA Rotate panorama
    #   if R is given, vp (vanishing point) will be overlooked
    #   otherwise R is computed from vp

    [sphereH, sphereW, C] = img.shape
    # rotImg = zeros( sphereH, sphereW, C);

    ## new uv coordinates
    [TX, TY] = np.meshgrid(np.arange(sphereW), np.arange(sphereH))
    TX = TX.T.flatten() + 1
    TY = TY.T.flatten() + 1
    ANGx = (TX - sphereW / 2 - 0.5) / sphereW * np.pi * 2
    ANGy = -(TY - sphereH / 2 - 0.5) / sphereH * np.pi
    uvNew = np.column_stack((ANGx, ANGy))
    xyzNew = CoordsTransform.uv2xyzN(uvNew, 0)

    ## rotation matrix
    if R == None:
        R = np.dot(np.diag([1, 1, 1]), np.linalg.pinv(vp.T))

    xyzOld = np.dot(np.linalg.pinv(R), xyzNew.T).T
    uvOld = CoordsTransform.xyz2uvN(xyzOld, 0).T

    # Px = uvOld(:,1)/2/pi*sphereW + 0.5 + sphereW/2;
    # Py = -uvOld(:,2)/pi*sphereH + 0.5 + sphereH/2;
    Px = (uvOld[:, 0] + np.pi) / (2 * np.pi) * sphereW + 0.5
    Py = (-uvOld[:, 1] + np.pi / 2) / np.pi * sphereH + 0.5

    Px = np.reshape(Px, [sphereW, sphereH]).T
    Py = np.reshape(Py, [sphereW, sphereH]).T

    # boundary
    imgNew = np.double(np.zeros([sphereH + 2, sphereW + 2, C]))
    imgNew[1:-1, 1:-1, :] = img
    imgNew[1:-1, 0, :] = img[:, -1, :]
    imgNew[1:-1, -1, :] = img[:, 0, :]

    halfW = np.int(sphereW / 2)

    imgNew[0, 1:halfW + 1, :] = img[0, sphereW:halfW - 1:-1, :]
    imgNew[0, halfW + 1:-1, :] = img[0, halfW - 1::-1, :]
    imgNew[-1, 1:halfW + 1, :] = img[-1, sphereW:halfW - 1:-1, :]
    imgNew[-1, halfW + 1:-1, :] = img[0, halfW:0:-1, :]
    imgNew[0, 0, :] = img[0, 0, :]
    imgNew[-1, -1, :] = img[-1, -1, :]
    imgNew[0, -1, :] = img[0, -1, :]
    imgNew[-1, 0, :] = img[-1, 0, :]

    rotImg = Projection.warpImageFast(imgNew, Px + 1, Py + 1)
    # rotImg = warpImageFast(img, Px, Py);

    return rotImg, R
def rotateLines(lines, R):
    #ROTATELINES Rotate lines on panorama
    #   lines: parameterized lines, R: rotation matrix

    [numLine, dimLine] = lines.shape
    lines_N = np.zeros([numLine, dimLine])
    for i in np.arange(numLine):
        n = lines[i, 0:3]
        sid = lines[i, 4] * 2 * np.pi - np.pi
        eid = lines[i, 5] * 2 * np.pi - np.pi
        u = np.row_stack((sid, eid))
        v = CoordsTransform.computeUVN(n, u, lines[i, 3])
        xyz = CoordsTransform.uv2xyzN(np.column_stack((u, v)), lines[i, 3])

        n_N = np.dot(R, n.T).T
        n_N = n_N / np.linalg.norm(n_N, 2)
        xyz_N = np.dot(R, xyz.T).T
        lines_N[i, 3] = np.argmax(np.abs(n_N[[2, 0, 1]]))
        uv_N = CoordsTransform.xyz2uvN(xyz_N, lines_N[i, 3]).T
        umax = max(uv_N[:, 0]) + np.pi
        umin = min(uv_N[:, 0]) + np.pi
        if umax - umin > np.pi:
            lines_N[i, 4:6] = np.array([umax, umin]) / 2 / np.pi
        else:
            lines_N[i, 4:6] = np.array([umin, umax]) / 2 / np.pi

        lines_N[i, 0:3] = n_N
        #     lines_N(i,5:6) = (uv_N(:,1)'+pi)/2/pi;
        if dimLine >= 7:
            lines_N[i, 6] = np.arccos(
                np.sum(xyz_N[0, :] * xyz_N[1, :]) /
                (np.linalg.norm(xyz_N[0, :], 2) *
                 np.linalg.norm(xyz_N[1, :], 2)))
            # lines_N(i,7) = lines(i,7); # this should be ok as well

        if dimLine >= 8:
            lines_N[i, 7] = lines[i, 7]

    return lines_N
示例#5
0
def gbPanoSegment(img, sigma, k, minSz):
    #GBPANOSEGMENT Graph-based image segmentation on panorama
    #   Similar as Pedro's algorithm, only the graph is built on sphere, so
    #   left and right side are considered as attached.
    #   img: should be in uint8 [0~256]
    #   sigma, k, minSz: same parameters as in Pedro's algorithm

    [height, width, _] = img.shape
    #img_smooth = smooth(img, sigma);

    #sigma = 10;
    img_smooth = np.zeros([height, width, 3])
    img_smooth[:, :, 0] = gaussian_filter(img[:, :, 0], sigma)
    img_smooth[:, :, 1] = gaussian_filter(img[:, :, 1], sigma)
    img_smooth[:, :, 2] = gaussian_filter(img[:, :, 2], sigma)

    #SrcImage = './data/rotImg_smooth.mat'
    #dict = loadmat(SrcImage)
    #img_smooth = dict['img_smooth']
    #plt.subplot(2, 1, 1)
    #plt.imshow(np.uint8(img))

    #plt.subplot(2, 1, 2)
    #plt.imshow(np.uint8(img_smooth))
    #plt.show()

    ## uniformly sample vectors on sphere and segment, test later
    dict = loadmat('./data/uniformvector_lvl8.mat')
    coor = dict['coor']
    tri = dict['tri']
    #[coor, tri] = getUniformVector(8);

    # [ E ] = getSketchTokenEdgemap( img );
    # [EE, Ix, Iy] = dt2(double(E), 0.1, 0, 0.1, 0 );
    EE = np.zeros([height, width])

    xySubs = CoordsTransform.uv2coords(CoordsTransform.xyz2uvN(coor, 0), width,
                                       height, 0)
    xySubs = np.int32(xySubs)

    #SrcImage = './data/xySubs.mat'
    #dict = loadmat(SrcImage)
    #xySubs = dict['xySubs']
    #xySubs = xySubs -1;

    idx = np.where(xySubs[:, 1] < 0)
    xySubs[idx, 1] = 0

    idx = np.where(xySubs[:, 1] >= 512)
    xySubs[idx, 1] = 511

    idx = np.where(xySubs[:, 0] >= 1024)
    xySubs[idx, 0] = 1023

    SubXY = np.array([xySubs[:, 1], xySubs[:, 0]]).T

    #xyinds = np.ravel_multi_index(SubXY,(height ,width));
    #offset = width*height;

    tri = tri - 1
    e0 = np.array([tri[:, 0], tri[:, 1]]).T
    e1 = np.array([tri[:, 1], tri[:, 2]]).T
    e2 = np.array([tri[:, 2], tri[:, 0]]).T

    edges = np.row_stack((e0, e1, e2))
    invert = edges[:, 1] < edges[:, 0]
    edges[invert, :] = edges[invert, 1::-1]

    uniEdges, _ = np.unique(edges, return_inverse=True, axis=0)

    #eid0 = np.unravel_index(xyinds[uniEdges[:,0]],(height,width,3))
    #eid1 = np.unravel_index(xyinds[uniEdges[:,1]],(height,width,3))

    eid0 = SubXY[uniEdges[:, 0], :].T
    eid1 = SubXY[uniEdges[:, 1], :].T

    #eid0offset =  np.unravel_index(xyinds[uniEdges[:,0]] + offset,(height,width,3))
    #eid1offset =  np.unravel_index(xyinds[uniEdges[:,1]] + offset,(height,width,3))

    #eid0offset2 =  np.unravel_index(xyinds[uniEdges[:,0]] + 2 * offset,(height,width,3))
    #eid1offset2 =  np.unravel_index(xyinds[uniEdges[:,1]] + 2 * offset,(height,width,3))

    if any(eid0[:, 0] >= 512):
        print('nono')

    weight = (img_smooth[eid0[0], eid0[1], 0] - img_smooth[eid1[0], eid1[1], 0]
              )**2 + (img_smooth[eid0[0], eid0[1], 1] -
                      img_smooth[eid1[0], eid1[1], 1])**2 + (
                          img_smooth[eid0[0], eid0[1], 2] -
                          img_smooth[eid1[0], eid1[1], 2])**2
    gdweight = (EE[eid0[0], eid0[1]] + EE[eid0[0], eid0[1]]) / 2
    panoEdge = np.array([
        uniEdges[:, 0], uniEdges[:, 1],
        np.sqrt(np.double(weight)) + 10 * np.double(gdweight)
    ])

    maxID = coor.shape[0]
    num = uniEdges.shape[0]

    edgeLabel = segmentGraphEdge((maxID, num, panoEdge, k, minSz))

    L = np.unique(edgeLabel)
    temp = np.zeros(len(edgeLabel))

    [gridX, gridY] = np.meshgrid(np.arange(width), np.arange(height))

    for i in np.arange(len(L)):
        temp[edgeLabel == L[i]] = i + 1

    pixelvector = CoordsTransform.uv2xyzN(
        CoordsTransform.coords2uv([gridX[:] + 1, gridY[:] + 1], width, height),
        0)

    # k = 1;
    # [nnidx, dists] = annsearch( coor', pixelvector', k);
    #[nnidx, dists] = knnsearch( coor, pixelvector);

    nbrs = NearestNeighbors(n_neighbors=1, algorithm='auto').fit(coor)
    dists, nnidx = nbrs.kneighbors(pixelvector)

    #from scipy import spatial
    #tree = spatial.KDTree(coor);
    #dists, nnidx  = tree.query(pixelvector,k=1);

    #SrcImage = './data/temp.mat'
    #dict = loadmat(SrcImage)
    #tempm = dict['temp']

    #SrcImage = './data/nnidx.mat'
    #dict = loadmat(SrcImage)
    #nnidxm = dict['nnidx']
    #nnidxm = nnidxm - 1
    panoSegment = np.reshape(temp[nnidx], [width, height]).T

    #pimg = PIL.Image.fromarray(np.uint8(panoSegment))
    ##pimggray = pimg.convert('L')

    #pimg.save('./data/segmentation.jpg');

    return panoSegment
def process2(rotImg):
    #SrcImage = './data/rotImg.jpg'
    #rotImg = imread(SrcImage, mode='RGB')
    #rotImg = np.uint8(rotImg)

    ## image segmentation:
    panoSegment = Segmentation.gbPanoSegment(rotImg, 0.5, 200, 50)

    #SrcImage = './data/panoSegment.mat'
    #dict = loadmat(SrcImage)
    #panoSegment = dict['panoSegment']

    plt.imshow(panoSegment, cmap='gray')
    plt.title('Segmentation: left and right are connected')
    plt.show()

    ## Get region inside a polygon
    dict = loadmat('./data/points.mat')
    # load room corner
    points = dict['points']

    dict = loadmat('./data/uniformvector_lvl8.mat')
    coor = dict['coor']
    tri = dict['tri']

    vcs = CoordsTransform.uv2coords(CoordsTransform.xyz2uvN(coor, 0), 1024,
                                    512, 0)
    # transfer vectors to image coordinates
    coords = CoordsTransform.uv2coords(CoordsTransform.xyz2uvN(points, 0),
                                       1024, 512, 0)

    [s_xyz, _] = PolygonRegion.sortXYZ(points[0:4, :])
    # define a region with 4 vertices
    [inside, _, _] = PolygonRegion.insideCone(s_xyz[-1::-1, :], coor, 0)
    # test which vectors are in region

    #figure(8);
    plt.imshow(rotImg)
    #hold on
    for i in np.arange(4):
        plt.scatter(coords[i, 0], coords[i, 1], 100, 'r', 's')

    for i in np.where(inside):
        plt.scatter(vcs[i, 0], vcs[i, 1], 1, 'g', 'o')

    [s_xyz, I] = PolygonRegion.sortXYZ(points[4:8, :])
    [inside, _, _] = PolygonRegion.insideCone(s_xyz[-1::-1, :], coor, 0)
    for i in np.arange(4, 8):
        plt.scatter(coords[i, 0], coords[i, 1], 100, 'r', 's')

    for i in np.where(inside):
        plt.scatter(vcs[i, 0], vcs[i, 1], 1, 'b', 'o')

    plt.title('Display of two wall regions')
    plt.show()

    ## Reconstruct a box, assuming perfect upperright cuboid
    D3point = np.zeros([8, 3])
    pointUV = CoordsTransform.xyz2uvN(points, 0).T
    floor = -160

    floorPtID = np.array([2, 3, 6, 7, 2]) - 1
    ceilPtID = np.array([1, 4, 5, 8, 1]) - 1
    for i in np.arange(4):
        D3point[floorPtID[i], :] = LineFaceIntersection.LineFaceIntersection(
            np.array([0, 0, floor]), np.array([0, 0, 1]), np.array([0, 0, 0]),
            points[floorPtID[i], :])
        D3point[ceilPtID[i], 2] = D3point[floorPtID[i], 2] / np.tan(
            pointUV[floorPtID[i], 1]) * np.tan(pointUV[ceilPtID[i], 1])

    ceiling = np.mean(D3point[ceilPtID, 2])
    for i in np.arange(4):
        D3point[ceilPtID[i], :] = LineFaceIntersection.LineFaceIntersection(
            np.array([0, 0, ceiling]), np.array([0, 0, 1]),
            np.array([0, 0, 0]), points[ceilPtID[i], :])

    #figure(9);
    #fig = plt.figure()
    #ax = fig.add_subplot(111, projection='3d')
    #ax.scatter(D3point[floorPtID,0], D3point[floorPtID,1], D3point[floorPtID,2]);
    #hold on
    #ax.scatter(D3point[ceilPtID,0], D3point[ceilPtID,1], D3point[ceilPtID,2]);

    #for i in np.arange(4):
    #ax.scatter(D3point[[floorPtID[i], ceilPtID[i]],0], D3point[[floorPtID[i], ceilPtID[i]],1], D3point[[floorPtID[i], ceilPtID[i]],2]);

    #plt.title('Basic 3D reconstruction');
    #plt.show()
    #figure(10);
    firstID = np.array([1, 4, 5, 8, 2, 3, 6, 7, 1, 4, 5, 8]) - 1
    secndID = np.array([4, 5, 8, 1, 3, 6, 7, 2, 2, 3, 6, 7]) - 1
    lines = LineFaceIntersection.lineFromTwoPoint(points[firstID, :],
                                                  points[secndID, :])

    plt.imshow(Visualization.paintParameterLine(lines, 1024, 512, rotImg))
    #hold on

    for i in np.arange(8):
        plt.scatter(coords[i, 0], coords[i, 1], 100, 'r', 's')

    plt.title('Get lines by two points')
    plt.show()
def process1():

    SrcImage = './data/pano_room.jpg'

    panoImg = imread(SrcImage, mode='RGB')
    panoImg = np.double(panoImg / 255)

    pi = np.pi

    #project it to multiple perspective views
    cutSize = 320
    # size of perspective views
    fov = pi / 3
    # horizontal field of view of perspective views

    xh = np.arange(-pi, 5 / 6 * pi, pi / 6)

    yh = np.zeros([1, len(xh)])

    xp = [
        -3 / 3, -2 / 3, -1 / 3, +0 / 3, +1 / 3, +2 / 3, -3 / 3, -2 / 3, -1 / 3,
        +0 / 3, +1 / 3, +2 / 3
    ]
    xp = np.multiply(xp, pi)

    yp = [
        1 / 4, 1 / 4, 1 / 4, 1 / 4, 1 / 4, 1 / 4, -1 / 4, -1 / 4, -1 / 4,
        -1 / 4, -1 / 4, -1 / 4
    ]
    yp = np.multiply(yp, pi)
    x = np.append(xh, xp)
    x = np.append(x, 0)
    x = np.append(x, 0)
    y = np.append(yh, yp)
    y = np.append(y, +pi / 2)
    y = np.append(y, -pi / 2)  # viewing direction of perspective views

    sepScene = Projection.separatePano(panoImg, fov, x, y, cutSize)

    #figure 1
    #plt.imshow(np.uint8(sepScene[0].img* 255))
    #plt.show()

    ## Line segment detection on panorama: first on perspective views and project back to panorama
    numScene = len(sepScene)
    edges = []
    for i in np.arange(numScene):
        [edgeMap, edgeList] = VpEstimation.lsdWrap(sepScene[i].img, 0.7)

        edge = VpEstimation.Edge()
        edge.img = edgeMap
        edge.edgeLst = edgeList
        edge.fov = sepScene[i].fov
        edge.vx = sepScene[i].vx
        edge.vy = sepScene[i].vy
        edge.panoLst = VpEstimation.edgeFromImg2Pano(edge)

        edges = np.append(edges, edge)

    [lines, olines] = VpEstimation.combineEdgesN(edges)
    # combine line segments from views
    panoEdge = Visualization.paintParameterLine(lines, 1024, 512, None)
    # paint parameterized line segments

    ##plt.subplot(3, 1, 1)
    #plt.imshow(np.uint8(panoEdge),cmap='gray')
    #plt.show()

    ##plt.subplot(3, 1, 2)
    #plt.imshow(np.uint8(sepScene[0].img * 255))
    #plt.show()

    ##plt.subplot(3, 1, 3)
    #plt.imshow(np.uint8(edges[0].img) * 255,cmap='gray')
    #plt.show()

    # estimating vanishing point: Hough
    [olines, mainDirect, _, _] = VpEstimation.vpEstimationPano(lines)
    # mainDirect is vanishing point, in xyz format

    vpCoords = CoordsTransform.uv2coords(
        CoordsTransform.xyz2uvN(mainDirect, 0), 1024, 512, 0)
    # transfer to uv format, then image coords

    imgres = imresize(panoImg, [512, 1024])
    panoEdge1r = Visualization.paintParameterLine(olines[0].line, 1024, 512,
                                                  imgres)
    panoEdge2r = Visualization.paintParameterLine(olines[1].line, 1024, 512,
                                                  imgres)
    panoEdge3r = Visualization.paintParameterLine(olines[2].line, 1024, 512,
                                                  imgres)
    panoEdgeVP = np.array([panoEdge1r, panoEdge2r, panoEdge3r])

    panoEdgeVP = np.zeros((512, 1024, 3), 'uint8')
    panoEdgeVP[:, :, 0] = panoEdge1r
    panoEdgeVP[:, :, 1] = panoEdge2r
    panoEdgeVP[:, :, 2] = panoEdge3r

    #panoEdgeVP = np.reshape(panoEdgeVP,[512,1024,3])
    plt.imshow(panoEdgeVP)

    color = 'rgb'
    for i in np.arange(3):
        plt.scatter(vpCoords[i, 0], vpCoords[i, 1], 100, color[i], 'o')
        plt.scatter(vpCoords[i + 3, 0], vpCoords[i + 3, 1], 100, color[i], 'o')

    plt.title('Vanishing points and assigned line segments')
    #plt.show()

    # rotate panorama to coordinates spanned by vanishing directions
    vp = mainDirect[2::-1, :]
    [rotImg, R] = Rotation.rotatePanorama(imgres, vp, None)
    newMainDirect = Rotation.rotatePoint(mainDirect, R)
    panoEdge1r = Visualization.paintParameterLine(
        Rotation.rotateLines(olines[0].line, R), 1024, 512, rotImg)
    panoEdge2r = Visualization.paintParameterLine(
        Rotation.rotateLines(olines[1].line, R), 1024, 512, rotImg)
    panoEdge3r = Visualization.paintParameterLine(
        Rotation.rotateLines(olines[2].line, R), 1024, 512, rotImg)

    newPanoEdgeVP = np.zeros((512, 1024, 3), 'uint8')
    newPanoEdgeVP[:, :, 0] = panoEdge1r
    newPanoEdgeVP[:, :, 1] = panoEdge2r
    newPanoEdgeVP[:, :, 2] = panoEdge3r

    plt.imshow(newPanoEdgeVP)
    for i in np.arange(3):
        plt.scatter(vpCoords[i, 0], vpCoords[i, 1], 100, color[i], 'o')
        plt.scatter(vpCoords[i + 3, 0], vpCoords[i + 3, 1], 100, color[i], 'o')

    plt.title('Original image')
    plt.show()

    plt.imshow(newPanoEdgeVP)
    newVpCoords = CoordsTransform.uv2coords(
        CoordsTransform.xyz2uvN(newMainDirect, 0), 1024, 512, 0)

    for i in np.arange(3):
        plt.scatter(newVpCoords[i, 0], newVpCoords[i, 1], 100, color[i], 'o')
        plt.scatter(newVpCoords[i + 3, 0], newVpCoords[i + 3, 1], 100,
                    color[i], 'o')

    plt.title('Rotated image')
    plt.show()

    return newPanoEdgeVP
示例#8
0
def sphereHoughVote(segNormal, segLength, segScores, binRadius, orthTolerance,
                    candiSet, force_unempty):
    #SPHEREHOUGHVOTE Summary of this function goes here
    #   Detailed explanation goes here

    if 'force_unempty' in locals() == False:
        force_unempty = true

    ## initial guess
    # segNormal = arcList(:,1:3);
    # segLength = sqrt( sum((arcList(:,4:6)-arcList(:,7:9)).^2, 2));
    # segScores = arcList(:,end);
    numLinesg = segNormal.shape[0]

    # [voteBinPoints tri] = icosahedron2sphere(level);
    voteBinPoints = candiSet
    voteBinPoints = voteBinPoints[voteBinPoints[:, 2] >= 0, :]
    reversValid = segNormal[:, 2] < 0
    segNormal[reversValid, :] = -segNormal[reversValid, :]

    voteBinUV = CoordsTransform.xyz2uvN(voteBinPoints, 0)
    numVoteBin = len(voteBinPoints)
    voteBinValues = np.zeros([numVoteBin, 1])
    for i in np.arange(numLinesg):
        tempNorm = segNormal[i, :]
        tempDots = np.sum(voteBinPoints * repmat(tempNorm, numVoteBin, 1), 1)

        #     tempAngs = acos(abs(tempDots));
        #     voteBinValues = voteBinValues + normpdf(tempAngs, 0, 0.5*binRadius*pi/180)*segScores(i)*segLength(i);
        #     voteBinValues = voteBinValues + max(0, (2*binRadius*pi/180-tempAngs)./(2*binRadius*pi/180))*segScores(i)*segLength(i);

        valid = np.abs(tempDots) < np.cos((90 - binRadius) * np.pi / 180)

        voteBinValues[
            valid] = voteBinValues[valid] + segScores[i] * segLength[i]

    checkIDs1 = np.where(voteBinUV[1, :] > np.pi / 3)
    checkIDs1 = checkIDs1[0]

    voteMax = 0
    checkID1Max = 0
    checkID2Max = 0
    checkID3Max = 0

    for j in np.arange(len(checkIDs1)):
        #     fprintf('#d/#d\n', j, length(checkIDs1));
        checkID1 = checkIDs1[j]
        vote1 = voteBinValues[checkID1]
        if voteBinValues[checkID1] == 0 and force_unempty:
            continue

        checkNormal = voteBinPoints[checkID1, :]
        dotProduct = np.sum(
            voteBinPoints * repmat(checkNormal, voteBinPoints.shape[0], 1), 1)
        checkIDs2 = np.where(
            np.abs(dotProduct) < np.cos((90 - orthTolerance) * np.pi / 180))
        checkIDs2 = checkIDs2[0]
        for i in np.arange(len(checkIDs2)):
            checkID2 = checkIDs2[i]
            if voteBinValues[checkID2] == 0 and force_unempty:
                continue

            vote2 = vote1 + voteBinValues[checkID2]
            cpv = np.cross(voteBinPoints[checkID1, :],
                           voteBinPoints[checkID2, :])
            cpn = np.sqrt(np.sum(cpv**2))
            dotProduct = np.sum(
                voteBinPoints * repmat(cpv, voteBinPoints.shape[0], 1),
                1) / cpn
            checkIDs3 = np.where(
                abs(dotProduct) > np.cos(orthTolerance * np.pi / 180))
            checkIDs3 = checkIDs3[0]

            for k in np.arange(len(checkIDs3)):
                checkID3 = checkIDs3[k]
                if voteBinValues[checkID3] == 0 and force_unempty:
                    continue

                vote3 = vote2 + voteBinValues[checkID3]
                if vote3 > voteMax:
                    #               print('#f\n', vote3);
                    lastStepCost = vote3 - voteMax
                    if voteMax != 0:
                        tmp = np.sum(
                            voteBinPoints[
                                [checkID1Max, checkID2Max, checkID3Max], :] *
                            voteBinPoints[[checkID1, checkID2, checkID3], :],
                            1)
                        lastStepAngle = np.arccos(tmp)
                    else:
                        lastStepAngle = [0, 0, 0]

                    checkID1Max = checkID1
                    checkID2Max = checkID2
                    checkID3Max = checkID3

                    voteMax = vote3

    #             voteBins(checkID1, checkID2, checkID3) = true;

    if checkID1Max == 0:
        print('Warning: No orthogonal voting exist!!!\n')
        refiXYZ = []
        lastStepCost = 0
        lastStepAngle = 0
        return

    initXYZ = voteBinPoints[[checkID1Max, checkID2Max, checkID3Max], :]

    ## refine
    # binRadius = binRadius/2;

    refiXYZ = np.zeros([3, 3])
    dotprod = np.sum(segNormal * repmat(initXYZ[0, :], segNormal.shape[0], 1),
                     1)
    valid = np.abs(dotprod) < np.cos((90 - binRadius) * np.pi / 180)
    validNm = segNormal[valid, :]

    segL = segLength[valid]
    validWt = np.reshape(segL, [segL.shape[0], 1]) * segScores[valid]
    validWt = validWt / np.max(validWt)
    _, refiNM = curveFitting(validNm, validWt)
    refiXYZ[0, :] = refiNM

    dotprod = np.sum(segNormal * repmat(initXYZ[1, :], segNormal.shape[0], 1),
                     1)
    valid = np.abs(dotprod) < np.cos((90 - binRadius) * np.pi / 180)
    validNm = segNormal[valid, :]

    segl = segLength[valid]
    validWt = np.reshape(segl, [segl.shape[0], 1]) * segScores[valid]
    validWt = validWt / max(validWt)

    validNm = np.row_stack((validNm, refiXYZ[0, :]))
    validWt = np.row_stack((validWt, sum(validWt) * 0.1))

    _, refiNM = curveFitting(validNm, validWt)
    refiXYZ[1, :] = refiNM

    refiNM = np.cross(refiXYZ[0, :], refiXYZ[1, :])
    refiXYZ[2, :] = refiNM / np.linalg.norm(refiNM, 2)

    # [~,refiNM] = curveFitting(validNm, validWt);
    # refiXYZ(i,:) = refiNM;
    #
    #
    #
    # for i = 1:3
    #     dotprod = dot(segNormal, repmat(initXYZ(i,:), [size(segNormal,1) 1]), 2);
    #     valid = abs(dotprod)<cos((90-binRadius)*pi/180);
    #     validNm = segNormal(valid,:);
    #     validWt = segLength(valid).*segScores(valid);
    #     [~,refiNM] = curveFitting(validNm, validWt);
    #     refiXYZ(i,:) = refiNM;
    # end
    ## output
    # # [voteBinPoints tri] = icosahedron2sphere(level);
    # OBJ.vertices = voteBinPoints;
    # # OBJ.vertices_normal = zeros(size(voteBinPoints));
    # # OBJ.vertices_normal(:,1) = 1;
    # OBJ.vertices_normal = voteBinPoints;
    # uv = xyz2uvN(voteBinPoints);
    # OBJ.vertices_texture = [(uv(:,1)+pi)/2/pi (uv(:,2)+pi/2)/pi];
    #
    # OBJ.objects.type = 'f';
    # OBJ.objects.data.vertices = tri;
    # OBJ.objects.data.texture = tri;
    # OBJ.objects.data.normal = tri;
    #
    # # check boundary
    # newVTSID = size(OBJ.vertices_texture,1);
    # newFace = 0;
    # newAddVT = zeros(1000,2);
    # for i = 1:size(OBJ.objects.data.vertices,1)
    #     texture = OBJ.objects.data.texture(i,:);
    #     vt = OBJ.vertices_texture(texture,:);
    #     v = OBJ.vertices(texture,:);
    #     if (std(vt(:,1)))<0.3
    #         continue;
    #     end
    #
    #     newFace = newFace + 1;
    #
    #     modify = (vt(1,1)-vt(:,1))>0.5;
    #     vt(modify,1) = vt(modify,1)+1;
    #     modify = (vt(1,1)-vt(:,1))<-0.5;
    #     vt(modify,1) = vt(modify,1)-1;
    #
    #     newAddVT((newFace-1)*3+1:newFace*3,:) = vt;
    #     OBJ.objects.data.texture(i,:) = [(newFace-1)*3+1:newFace*3] + newVTSID;
    #
    #     if newFace>300
    #         fprintf('Warning: pre-assign more memory!/n');
    #     end
    # end
    # OBJ.vertices_texture = [OBJ.vertices_texture;newAddVT];
    #
    # material(1).type='newmtl';
    # material(1).data='Textured';
    # material(2).type='Ka';
    # material(2).data=[1.0 1.0 1.0];
    # material(3).type='Kd';
    # material(3).data=[1.0 1.0 1.0];
    # material(4).type='Ks';
    # material(4).data=[1.0 1.0 1.0];
    # material(5).type='illum';
    # material(5).data=2;
    # material(6).type='map_Kd';
    # material(6).data='pano_hotel_2.jpg';
    # OBJ.material = material;
    #
    # write_wobj(OBJ, 'exciting_notext.obj');

    # uv = xyz2uvN(voteBinPoints);
    # textureMap = zeros(512, 1024);
    # x = min(round((uv(:,1)+pi)/2/pi*1024+1), 1024);
    # y = 512 - min(round((uv(:,2)+pi/2)/pi*512+1), 512) + 1;
    # value = voteBinValues./max(voteBinValues);
    # value = value.^3;
    # # [gridX, gridY] = meshgrid(x,y);
    # for i = 1:length(x)
    #     sx = max(1, x(i)-3);
    #     ex = min(1024, x(i)+3);
    #     sy = max(1, y(i)-3);
    #     ey = min(512, y(i)+3);
    #     textureMap(sy:ey, sx:ex) = value(i);
    # end
    #
    # # ind = sub2ind([512 1024], y, x);
    # # textureMap(ind) = voteBinValues;
    # imwrite(textureMap, 'exciting.png');

    return [refiXYZ, lastStepCost, lastStepAngle]
示例#9
0
def findMainDirectionEMA(lines):
    #FINDMAINDIRECTION compute vp from set of lines
    #   Detailed explanation goes here
    print('Computing vanishing point:\n')

    # arcList = [];
    # for i = 1:length(edge)
    #     panoLst = edge(i).panoLst;
    #     if size(panoLst,1) == 0
    #         continue;
    #     end
    #     arcList = [arcList; panoLst];
    # end

    ## initial guess
    segNormal = lines[:, 0:3]
    segLength = lines[:, 6]
    segScores = np.ones([lines.shape[0], 1])
    #lines(:,8);

    shortSegValid = segLength < 5 * np.pi / 180
    segNormal = segNormal[~shortSegValid, :]
    segLength = segLength[~shortSegValid]
    segScores = segScores[~shortSegValid]

    numLinesg = segNormal.shape[0]
    [candiSet, tri] = icosahedron2sphere.icosahedron2sphere(3)
    ang = np.arccos(np.sum(
        candiSet[tri[0, 0], :] * candiSet[tri[0, 1], :])) / np.pi * 180
    binRadius = ang / 2
    [initXYZ, score, angle] = sphereHoughVote(segNormal, segLength, segScores,
                                              2 * binRadius, 2, candiSet, True)

    if len(initXYZ) == 0:
        print('Initial Failed\n')
        mainDirect = []
        return

    print('Initial Computation: #d candidates, #d line segments\n',
          candiSet.shape[0], numLinesg)
    print(
        'direction 1: #f #f #f\ndirection 2: #f #f #f\ndirection 3: #f #f #f\n',
        initXYZ[0, 0], initXYZ[0, 1], initXYZ[0, 2], initXYZ[1, 0],
        initXYZ[1, 1], initXYZ[1, 2], initXYZ[2, 0], initXYZ[2, 1], initXYZ[2,
                                                                            2])
    ## iterative refine
    iter_max = 3
    [candiSet, tri] = icosahedron2sphere.icosahedron2sphere(5)
    numCandi = candiSet.shape[0]
    angD = np.arccos(np.sum(
        candiSet[tri[0, 0], :] * candiSet[tri[0, 1], :])) / np.pi * 180
    binRadiusD = angD / 2
    curXYZ = initXYZ
    tol = np.linspace(4 * binRadius, 4 * binRadiusD, iter_max)
    # shrink down #ls and #candi
    for iter in np.arange(iter_max):
        dot1 = np.abs(np.sum(segNormal * repmat(curXYZ[0, :], numLinesg, 1),
                             1))
        dot2 = np.abs(np.sum(segNormal * repmat(curXYZ[1, :], numLinesg, 1),
                             1))
        dot3 = np.abs(np.sum(segNormal * repmat(curXYZ[2, :], numLinesg, 1),
                             1))
        valid1 = dot1 < np.cos((90 - tol[iter]) * np.pi / 180)
        valid2 = dot2 < np.cos((90 - tol[iter]) * np.pi / 180)
        valid3 = dot3 < np.cos((90 - tol[iter]) * np.pi / 180)
        valid = valid1 | valid2 | valid3

        if (sum(valid) == 0):
            print('ZERO line segment for voting\n')
            break

        subSegNormal = segNormal[valid, :]
        subSegLength = segLength[valid]
        subSegScores = segScores[valid]

        dot1 = np.abs(np.sum(candiSet * repmat(curXYZ[0, :], numCandi, 1), 1))
        dot2 = np.abs(np.sum(candiSet * repmat(curXYZ[1, :], numCandi, 1), 1))
        dot3 = np.abs(np.sum(candiSet * repmat(curXYZ[2, :], numCandi, 1), 1))
        valid1 = dot1 > np.cos(tol[iter] * np.pi / 180)
        valid2 = dot2 > np.cos(tol[iter] * np.pi / 180)
        valid3 = dot3 > np.cos(tol[iter] * np.pi / 180)
        valid = valid1 | valid2 | valid3

        if (sum(valid) == 0):
            print('ZERO candidate for voting\n')
            break

        subCandiSet = candiSet[valid, :]

        [tcurXYZ, _,
         _] = sphereHoughVote(subSegNormal, subSegLength, subSegScores,
                              2 * binRadiusD, 2, subCandiSet, True)

        if (len(tcurXYZ) == 0):
            print('NO answer found!\n')
            break

        curXYZ = tcurXYZ

        print('#d-th iteration: #d candidates, #d line segments\n', iter,
              subCandiSet.shape[0], len(subSegScores))

    print(
        'direction 1: #f #f #f\ndirection 2: #f #f #f\ndirection 3: #f #f #f\n',
        curXYZ[0, 0], curXYZ[0, 1], curXYZ[0, 2], curXYZ[1, 0], curXYZ[1, 1],
        curXYZ[1, 2], curXYZ[2, 0], curXYZ[2, 1], curXYZ[2, 2])
    mainDirect = curXYZ

    mainDirect[0, :] = mainDirect[0, :] * np.sign(mainDirect[0, 2])
    mainDirect[1, :] = mainDirect[1, :] * np.sign(mainDirect[1, 2])
    mainDirect[2, :] = mainDirect[2, :] * np.sign(mainDirect[2, 2])

    uv = CoordsTransform.xyz2uvN(mainDirect, 0)
    I1 = np.argmax(uv[1, :])
    J = np.setdiff1d([
        0,
        1,
        2,
    ], I1)
    I2 = np.argmin(np.abs(np.sin(uv[0, J])))
    I2 = J[I2]
    I3 = np.setdiff1d([0, 1, 2], [I1, I2])
    mainDirect = np.row_stack(
        (mainDirect[I1, :], mainDirect[I2, :], mainDirect[I3, :]))

    mainDirect[0, :] = mainDirect[0, :] * np.sign(mainDirect[0, 2])
    mainDirect[1, :] = mainDirect[1, :] * np.sign(mainDirect[1, 1])
    mainDirect[2, :] = mainDirect[2, :] * np.sign(mainDirect[2, 0])

    mainDirect = np.row_stack((mainDirect, -mainDirect))

    # score = 0;

    return [mainDirect, score, angle]
示例#10
0
def combineEdgesN(edges):
    #COMBINEEDGES Combine some small line segments, should be very conservative
    #   lines: combined line segments
    #   ori_lines: original line segments
    #   line format: [nx ny nz projectPlaneID umin umax LSfov score]
    arcList = []
    for i in np.arange(edges.shape[0]):
        panoLst = edges[i].panoLst
        if panoLst[0].shape[0] == 0:
            continue

        if (len(arcList)) == 0:
            arcList = panoLst
        else:
            arcList = np.row_stack((arcList, panoLst))

    ## ori lines
    numLine = arcList.shape[0]
    ori_lines = np.zeros((numLine, 8))
    areaXY = np.abs(
        np.sum(arcList[:, 0:3] * repmat([0, 0, 1], arcList.shape[0], 1), 1))
    areaYZ = np.abs(
        np.sum(arcList[:, 0:3] * repmat([1, 0, 0], arcList.shape[0], 1), 1))
    areaZX = np.abs(
        np.sum(arcList[:, 0:3] * repmat([0, 1, 0], arcList.shape[0], 1), 1))

    vec = [areaXY, areaYZ, areaZX]

    #[_, planeIDs] = np.max(vec,  1); # 1:XY 2:YZ 3:ZX
    planeIDs = np.argmax(vec, 0)

    for i in np.arange(numLine):
        ori_lines[i, 0:3] = arcList[i, 0:3]
        ori_lines[i, 3] = planeIDs[i]
        coord1 = arcList[i, 3:6]
        coord2 = arcList[i, 6:9]

        uv = CoordsTransform.xyz2uvN(np.row_stack((coord1, coord2)),
                                     planeIDs[i])
        umax = np.max(uv[0, :]) + np.pi
        umin = np.min(uv[0, :]) + np.pi
        if umax - umin > np.pi:
            ori_lines[i, 4:6] = np.column_stack((umax, umin)) / 2 / np.pi
    #         ori_lines(i,7) = umin + 1 - umax;
        else:
            ori_lines[i, 4:6] = np.column_stack((umin, umax)) / 2 / np.pi
    #         ori_lines(i,7) = umax - umin;

        ori_lines[i, 6] = np.arccos(
            np.sum(coord1 * coord2) /
            (np.linalg.norm(coord1, 2) * np.linalg.norm(coord2, 2)))
        ori_lines[i, 7] = arcList[i, 9]

    # valid = ori_lines(:,3)<0;
    # ori_lines(valid,1:3) = -ori_lines(valid,1:3);

    ## additive combination
    lines = ori_lines
    # panoEdge = paintParameterLine( lines, 1024, 512);
    # figure; imshow(panoEdge);
    for iter in np.arange(3):
        numLine = lines.shape[0]
        valid_line = np.ones([numLine], dtype=bool)
        for i in np.arange(numLine):
            #         fprintf('#d/#d\n', i, numLine);
            if valid_line[i] == False:
                continue

            dotProd = np.sum(lines[:, 0:3] * repmat(lines[i, 0:3], numLine, 1),
                             1)
            valid_curr = (np.abs(dotProd) > np.cos(
                1 * np.pi / 180)) & valid_line
            valid_curr[i] = False
            valid_ang = np.where(valid_curr)
            for j in valid_ang[0]:
                range1 = lines[i, 4:6]
                range2 = lines[j, 4:6]
                valid_rag = intersection(range1, range2)
                if valid_rag == False:
                    continue

                # combine
                I = np.argmax(np.abs(lines[i, 0:3]))
                if lines[i, I] * lines[j, I] > 0:
                    nc = lines[i, 0:3] * lines[i, 6] + lines[j, 0:3] * lines[j,
                                                                             6]
                else:
                    nc = lines[i, 0:3] * lines[i, 6] - lines[j, 0:3] * lines[j,
                                                                             6]

                nc = nc / np.linalg.norm(nc, 2)

                if insideRange(range1[0], range2):
                    nrmin = range2[0]
                else:
                    nrmin = range1[0]

                if insideRange(range1[1], range2):
                    nrmax = range2[1]
                else:
                    nrmax = range1[1]

                u = np.array([nrmin, nrmax]) * 2 * np.pi - np.pi
                v = CoordsTransform.computeUVN(nc, u, lines[i, 3])
                xyz = CoordsTransform.uv2xyzN(np.column_stack((u, v)),
                                              lines[i, 3])
                length = np.arccos(np.sum(xyz[0, :] * xyz[1, :]))
                scr = (lines[i, 6] * lines[i, 7] +
                       lines[j, 6] * lines[j, 7]) / (lines[i, 6] + lines[j, 6])

                nc = np.append(nc, lines[i, 3])
                nc = np.append(nc, nrmin)
                nc = np.append(nc, nrmax)
                nc = np.append(nc, length)
                nc = np.append(nc, scr)
                newLine = nc
                lines[i, :] = newLine
                valid_line[j] = False

        lines = lines[valid_line, :]
        print('iter: #d, before: #d, after: #d\n', iter, len(valid_line),
              sum(valid_line))

    return [lines, ori_lines]
    ''' 
def computePanoOmap(scene, edges, xyz):

    #COMPUTEPANOOMAP compute orientation map
    #   edge: line segments in separate views
    #   xyz: vanishing point
    #   OUTPUT:
    #   omap: orientation map of separate views
    #   panoOmap: project to panorama theta phi coordinate

    uv = CoordsTransform.xyz2uvN(xyz, 0).T
    omap = edges
    numViews = len(edges)

    [H, W] = edges[0].img.shape
    for i in np.arange(numViews):
        edgeLst = edges[i].edgeLst
        if edgeLst.shape[0] == 0:
            omap[i].img = np.zeros(H, W, 3)
            continue

        edge = VpEstimation.Edge()
        lines = []
        for j in np.arange(edgeLst.shape[0]):

            line = Line()
            line.point1 = edgeLst[j, 0:2]
            line.point2 = edgeLst[j, 2:4]
            line.length = np.sqrt(
                np.sum((edgeLst[j, 0:2] - edgeLst[j, 2:4])**2))

            lines = np.append(lines, line)

        x = edges[i].vx
        y = edges[i].vy
        fov = edges[i].fov
        ANGx = uv[:, 0]
        ANGy = uv[:, 1]
        # compute the radius of ball
        [imH, imW] = edges[i].img.shape
        R = (imW / 2) / np.tan(fov / 2)

        # im is the tangent plane, contacting with ball at [x0 y0 z0]
        x0 = R * np.cos(y) * np.sin(x)
        y0 = R * np.cos(y) * np.cos(x)
        z0 = R * np.sin(y)

        # plane function: x0(x-x0)+y0(y-y0)+z0(z-z0)=0
        # view line: x/alpha=y/belta=z/gamma
        # alpha=cos(phi)sin(theta);  belta=cos(phi)cos(theta);  gamma=sin(phi)
        alpha = np.cos(ANGy) * np.sin(ANGx)
        belta = np.cos(ANGy) * np.cos(ANGx)
        gamma = np.sin(ANGy)

        # solve for intersection of plane and viewing line: [x1 y1 z1]
        division = x0 * alpha + y0 * belta + z0 * gamma
        x1 = R * R * alpha / division
        y1 = R * R * belta / division
        z1 = R * R * gamma / division

        # vector in plane: [x1-x0 y1-y0 z1-z0]
        # positive x vector: vecposX = [cos(x) -sin(x) 0]
        # positive y vector: vecposY = [x0 y0 z0] x vecposX
        vec = np.row_stack([x1 - x0, y1 - y0, z1 - z0]).T
        vecposX = np.row_stack([np.cos(x), -np.sin(x), 0]).T
        deltaX = np.dot(vecposX, vec.T) / np.sqrt(np.dot(
            vecposX, vecposX.T)) + (imW + 1) / 2
        vecposY = np.cross(np.column_stack([x0, y0, z0]), vecposX)
        deltaY = np.dot(vecposY, vec.T) / np.sqrt(np.dot(
            vecposY, vecposY.T)) + (imH + 1) / 2

        deltaX = deltaX.flatten()
        deltaY = deltaY.reshape([-1])

        vp = np.zeros([3]).tolist()
        vp[0] = np.array([deltaX[0], deltaY[0]])
        vp[1] = np.array([deltaX[1], deltaY[1]])
        vp[2] = np.array([deltaX[2], deltaY[2]])

        lines_orig = lines
        [lines, lines_ex] = VVPR.taglinesvp(vp, lines_orig)
        [omapmore, OMAP_FACTOR] = VORM.compute_omap(lines, vp, [H, W, 3])

        #plt.imshow( np.uint8(omapmore) * 255)
        #plt.show()

        omap[i].img = np.double(omapmore)
        omap[i].lines_orig = lines_orig
        omap[i].lines = lines
        omap[i].vp = vp
        linesImg = np.zeros([H, W, 3])
        for j in np.arange(lines.shape[0]):
            lineclass = lines[j].lineclass
            if lineclass == 0:
                continue

            x = np.linspace(lines[j].point1[0] + 1, lines[j].point2[0] + 1,
                            1000)
            y = np.linspace(lines[j].point1[1] + 1, lines[j].point2[1] + 1,
                            1000)
            xx = np.maximum(np.minimum(np.round(x), W - 1), 0)
            yy = np.maximum(np.minimum(np.round(y), H - 1), 0)
            #index = sub2ind( [H W], yy, xx);
            #linesImg(H*W*(lineclass-1)+index) = 1;

        omap[i].linesImg = linesImg

    #     roomhyp = sample_roomhyp(1000, lines_ex, vp, [H W 3]);
    #     omap(i).roomhyp = roomhyp;

    #     [ bestHyp ] = evaluateRoomHyp( omap(i) );
    #     disp_room(roomhyp(randsample(length(roomhyp),10)), scene(i).img, 1); # display some

    #     cuboidhyp_omap = generate_cuboid_from_omap(omapmore, vp, OMAP_FACTOR);
    #     disp_cubes(cuboidhyp_omap, scene(i).img, 1); # display all
    ## original
    #     img = edge(i).img;
    #     [lines linesmore] = compute_lines(img);
    #     if length(lines)<=3
    #         omap(i).img = zeros(H,W,3);
    #         continue;
    #     end
    #
    #     [vp f] = compute_vp(lines, [H W 3]);
    #     lines_orig = lines;
    #     [lines lines_ex] = taglinesvp(vp, lines_orig);
    #     linesmore_orig = linesmore;
    #     [linesmore linesmore_ex] = taglinesvp(vp, linesmore_orig);
    #     [omapmore, OMAP_FACTOR] = compute_omap(lines, vp, [H W 3]);
    #     omap(i).img = double(omapmore);
    '''
    from scipy.io import loadmat
    dict = loadmat('./data/var.mat'); # load room corner
    omap = dict['omap']


    edgesObjs = []
    for i in np.arange(omap.shape[1]):
      
        edge = VpEstimation.Edge()
        edge.img = omap[0,i][0];
        edge.edgeLst = omap[0,i][1];
        edge.fov = omap[0,i][4];
        edge.vx = omap[0,i][2];
        edge.vy = omap[0,i][3];
        edge.panoLst = omap[0,i][5];
        edge.lines_orig = omap[0,i][6];
        edge.lines = omap[0,i][7];
        edge.vp = omap[0,i][8];
        edge.linesImg = omap[0,i][9];
        edgesObjs = np.append(edgesObjs,edge)
    '''

    panoOmap = Projection.combineViews(omap, 2048, 1024)

    return [omap, panoOmap]