示例#1
0
def DBparser():
    output = request.get_json()
    outputdto = output["dto"]
    rs = outputdto["DBlist"]
    outputlist = DBParser.DBParser(rs)
    outputdto["DBparsinglist"] = outputlist
    outputdto["DBlist"] = ""
    return output
示例#2
0
    def __init__(self):
        # type: () -> None
        self.parser = DBParser()

        # The lists all have the same number of elements, e.g.: len(self.lumi_data[trg][run]) == len(self.pu_data[trg][run])
        self.ls_data   = {}    # {'name': { run_number: [LS] } }
        self.rate_data = {}    # {'name': { run_number: { LS: raw_rates } } }
        self.ps_data   = {}    # {'name': { run_number: { LS: prescale  } } }
        self.pu_data   = {}    # {'name': { run_number: { LS: PU } } }
        self.lumi_data = {}    # {'name': { run_number: { LS: iLumi } } }
        self.det_data  = {}    # {'name': { run_number: { LS: detecotr_ready } } }
        self.bw_data   = {}    # {'name': { run_number: { LS: bandwidth } } }
        self.size_data = {}    # {'name': { run_number: { LS: size } } }
        self.lumi_info = {}    # {run_number: [ (LS,ilum,psi,phys,cms_ready) ] }
        self.bunch_map = {}    # {run_number: nBunches }

        self.hlt_triggers = []  # List of specific HLT triggers we want to get rates for, if empty --> get all HLT rates
        self.l1_triggers  = []  # List of specific L1 triggers we want to get rates for, if empty --> get all L1 rates
        self.runs_used    = []
        self.runs_skipped = []
        self.name_list = []     # List of all named objects for which we have data, e.g. triggers, datasets, streams, etc...
        self.psi_filter = []
        self.type_map = {}      # Maps each object name to a type: trigger, dataset, stream, or L1A
                                # NOTE: Still need to handle the case where if two objects share the same name, but diff type
                                # NOTE2: This approach should be fine, since DataParser owns the nameing, will need to be careful

        self.ls_veto = {}     # {run_number:[LS list]} - LS to ignore
        self.name_veto = []   # List of paths/objects to remove from consideration

        self.use_prescaled_rate = False # If true, then rates are not un-prescaled
        self.use_cross_section  = False # If true, then divide the rate by inst. lumi (only for L1 and HLT trigger data)
        self.normalize_bunches  = True  # Normalize by the number of colliding bunches
        self.correct_for_DT = True
        self.convert_output = True      # Flag to convert data from { LS: data } to [ data ], used in the data getters

        self.l1_rate_cut = 10e6         # Ignore L1 rates above this threshold

        self.max_deadtime = 10.
        self.min_ls = -1
        self.max_ls = 9999999

        self.use_L1_triggers  = False   # Gets L1 rates
        self.use_HLT_triggers = False   # Gets HLT rates
        self.use_streams      = False   # Gets stream rates
        self.use_datasets     = False   # Gets dataset rates
        self.use_L1A_rate     = False   # Gets the L1A rates

        self.use_ps_mask = False        # Collects data only for LS in the specified prescale indices

        self.use_best_lumi = True       # Uses best luminosity as determined by BRIL
        self.use_PLTZ_lumi = False      # Uses luminosity reading from PLTZ
        self.use_HF_lumi   = False      # Uses luminosity reading from HF

        self.verbose = True
示例#3
0
    def __init__(self):
        # type: () -> None

        self.parser = DBParser()
        self.rate_monitor = RateMonitor()

        self.do_cron_job = False

        # Set the default state for the rate_monitor and plotter to produce plots for triggers
        self.rate_monitor.object_list = []

        #self.set_plotter_fits = False
        self.rate_monitor.plotter.set_plotter_fits = False

        self.rate_monitor.plotter.compare_fits = False

        self.rate_monitor.use_fills          = False
        self.rate_monitor.use_pileup         = True
        self.rate_monitor.use_lumi           = False
        self.rate_monitor.make_fits          = False
        self.rate_monitor.update_online_fits = False

        self.rate_monitor.data_parser.normalize_bunches  = True
        self.rate_monitor.data_parser.use_prescaled_rate = False
        self.rate_monitor.data_parser.use_cross_section  = False

        self.rate_monitor.data_parser.use_L1_triggers  = True
        self.rate_monitor.data_parser.use_HLT_triggers = True
        self.rate_monitor.data_parser.use_streams  = False 
        self.rate_monitor.data_parser.use_datasets = False
        self.rate_monitor.data_parser.use_L1A_rate = False

        self.rate_monitor.fitter.use_best_fit = False

        self.rate_monitor.plotter.color_by_fill  = False       # Determines how to color the plots
        self.rate_monitor.plotter.use_fit        = False
        self.rate_monitor.plotter.use_multi_fit  = False
        self.rate_monitor.plotter.show_errors    = False
        self.rate_monitor.plotter.show_eq        = False
        self.rate_monitor.plotter.save_png       = True
        self.rate_monitor.plotter.save_root_file = True
        self.rate_monitor.plotter.show_fit_runs  = False

        self.rate_monitor.plotter.root_file_name   = "rate_plots.root"
        self.rate_monitor.plotter.label_Y = "pre-deadtime unprescaled rate / num colliding bx [Hz]"
        self.rate_monitor.plotter.name_X  = "< PU >"
        self.rate_monitor.plotter.units_X = ""

        self.rate_monitor.plotter.ls_options['show_bad_ls']  = False
        self.rate_monitor.plotter.ls_options['rm_bad_beams'] = False
        self.rate_monitor.plotter.ls_options['rm_bad_det']   = False
示例#4
0
from DBParser import *

dbparser = DBParser()
recentRunsFill = dbparser.getRecentRuns()

lastFill = str(recentRunsFill[1])

print lastFill

runList = []
for item in recentRunsFill[0]:
    runList.append(str(item))

print " ".join(runList)
示例#5
0
 def __init__(self):
     # Suppress root warnings
     ROOT.gErrorIgnoreLevel = 7000
     # Fits and fit files
     self.fitFile = "Fits/2016/FOG.pkl"               # The fit file, can contain both HLT and L1 triggers
     #self.fitFile = "../HLT_Fit_Run275911-276244_Tot12_fit.pkl"
     #        self.fitFile = ""#fits__273013-273017/HLT_Fit_Run273013-273017_Tot12_fit.pkl"               # The fit file, can contain both HLT and L1 triggers
     self.InputFitHLT = None         # The fit information for the HLT triggers
     self.InputFitL1 = None          # The fit information for the L1 triggers
     # DBParser
     self.parser = DBParser()        # A database parser
     # Rates
     self.HLTRates = None            # HLT rates
     self.L1Rates = None             # L1 rates
     self.Rates = None               # Combined L1 and HLT rates
     self.deadTimeData = {}          # initializing deadTime dict
     # Run control
     self.lastRunNumber = -2         # The run number during the last segment
     self.runNumber = -1             # The number of the current run
     self.numBunches = [-1, -1]     # Number of [target, colliding] bunches
     # Running over a previouly done run
     self.assignedNum = False        # If true, we look at the assigned run, not the latest run
     self.LSRange = []               # If we want to only look at a range of LS from the run
     ##self.simulate = False           # Simulate running through and monitoring a previous run
     # Lumisection control
     self.lastLS = 1                 # The last LS that was processed last segment
     self.currentLS = 1              # The latest LS written to the DB
     self.slidingLS = -1             # The number of LS to average over, use -1 for no sliding LS
     self.useLSRange = False         # Only look at LS in a certain range
     # Mode
     self.triggerMode = None         # The trigger mode
     self.mode = None                # Mode: cosmics, circulate, physics
     # Columns header
     self.displayRawRates = False    # display raw rates, to display prescaled rates, set = True
     self.pileUp = True              # derive expected rate as a function of the pileUp, and not the luminosity
     # Triggers
     self.cosmics_triggerList = "monitorlist_COSMICS.list" #default list used when in cosmics mode
     self.collisions_triggerList = "monitorlist_COLLISIONS.list" #default list used when in collision mode 
     self.triggerList = ""           # A list of all the L1 and HLT triggers we want to monitor
     self.userSpecTrigList = False   # User specified trigger list 
     self.usableHLTTriggers = []     # HLT Triggers active during the run that we have fits for (and are in the HLT trigger list if it exists)
     self.otherHLTTriggers = []      # HLT Triggers active during the run that are not usable triggers
     self.usableL1Triggers = []      # L1 Triggers active during the run that have fits for (and are in the L1 trigger list if it exists)
     self.otherL1Triggers = []       # L1 Triggers active during that run that are not usable triggers
     self.redoTList = True           # Whether we need to update the trigger lists
     self.useAll = False             # If true, we will print out the rates for all the HLT triggers
     self.useL1 = False              # If true, we will print out the rates for all the L1 triggers
     self.totalHLTTriggers = 0       # The total number of HLT Triggers on the menu this run
     self.totalL1Triggers = 0        # The total number of L1 Triggers on the menu this run
     self.fullL1HLTMenu = []
     self.ignoreStrings = ["Calibration","L1Tech","BPTX","Bptx"]
     # Restrictions
     self.removeZeros = False        # If true, we don't show triggers that have zero rate
     # Trigger behavior
     self.percAccept = 50.0          # The acceptence for % diff
     self.devAccept = 5              # The acceptance for deviation
     self.badRates = {}              # A dictionary: [ trigger name ] { num consecutive bad , whether the trigger was bad last time we checked, rate, expected, dev }
     self.recordAllBadTriggers = {}  # A dictionary: [ trigger name ] < total times the trigger was bad >
     self.maxCBR = 3                 # The maximum consecutive db queries a trigger is allowed to deviate from prediction by specified amount before it's printed out
     self.displayBadRates = -1       # The number of bad rates we should show in the summary. We use -1 for all
     self.usePerDiff = False         # Whether we should identify bad triggers by perc diff or deviatoin
     self.sortRates = True           # Whether we should sort triggers by their rates
     self.maxHLTRate = 500           # The maximum prescaled rate we allow an HLT Trigger to have
     self.maxL1Rate = 30000          # The maximum prescaled rate we allow an L1 Trigger to have
     # Other options
     self.quiet = False              # Prints fewer messages in this mode
     self.noColors = False           # Special formatting for if we want to dump the table to a file
     self.sendMailAlerts_static = True      # Whether we should send alert mails
     self.sendMailAlerts_dynamic = self.sendMailAlerts_static      
     self.sendAudioAlerts = False    # Whether we should send audio warning messages in the control room (CAUTION)
     self.isUpdating = True          # flag to determine whether or not we're receiving new LS
     self.showStreams = False         # Whether we should print stream information
     self.showPDs = False             # Whether we should print pd information
     self.totalStreams = 0           # The total number of streams
     self.maxStreamRate = 1000000    # The maximum rate we allow a "good" stream to have
     self.maxPDRate = 250            # The maximum rate we allow a "good" pd to have        
     self.lumi_ave = "NONE"
     self.pu_ave = "NONE"
     self.deadTimeCorrection = True  # correct the rates for dead time
     self.scale_sleeptime = 2.0      # Scales the length of time to wait before sending another query (1.0 = 60sec, 2.0 = 120sec, etc)