std = params_appliance[application]['std'] sess = tf.InteractiveSession() windowlength = params_appliance[args.appliance_name]['windowlength'] offset = int(0.5 * (params_appliance[application]['windowlength'] - 1.0)) test_kwag = {'inputs': test_set_x, 'targets': ground_truth, 'flatten': False} # val_kwag = { # 'inputs': val_set_x, # 'targets': val_set_y, # 'flatten':False} test_provider = DataProvider.MultiApp_Slider(batchsize=batchsize, shuffle=False, offset=offset) # val_provider = DataProvider.DoubleSourceSlider(batchsize = 5000, # shuffle = False, offset=offset) x = tf.placeholder(tf.float32, shape=[None, windowlength], name='x') y_ = tf.placeholder(tf.float32, shape=[None, 1], name='y_') ##### cnn2 network = tl.layers.InputLayer(x, name='input_layer') network = tl.layers.ReshapeLayer(network, shape=(-1, windowlength, 1, 1)) network = tl.layers.Conv2dLayer(network, act=tf.nn.relu, shape=[10, 1, 1, 30], strides=[1, 1, 1, 1], padding='SAME',
# load the data set tra_set_x, tra_set_y, val_set_x, val_set_y = load_dataset() # get the window length of the training examples windowlength = 599 sess = tf.InteractiveSession() offset = int(0.5 * (windowlength - 1.0)) tra_kwag = {'inputs': tra_set_x, 'targets': tra_set_y, 'flatten': False} val_kwag = {'inputs': val_set_x, 'targets': val_set_y, 'flatten': False} tra_provider = DataProvider.MultiApp_Slider(batchsize=batchsize, shuffle=True, offset=offset) val_provider = DataProvider.MultiApp_Slider(batchsize=5000, shuffle=False, offset=offset) x = tf.placeholder(tf.float32, shape=[None, windowlength], name='x') y_ = tf.placeholder(tf.float32, shape=[None, 6], name='y_') network = tl.layers.InputLayer(x, name='input_layer') network = tl.layers.ReshapeLayer(network, shape=(-1, windowlength, 1, 1)) network = tl.layers.Conv2dLayer(network, act=tf.nn.relu, shape=[10, 1, 1, 30], strides=[1, 1, 1, 1], padding='SAME',