speech_net = torch.nn.DataParallel(speech_net).cuda() # define optimizer if args.opt.lower() == 'adam': optimizer = optim.Adam(speech_net.parameters(), lr=args.lr) elif args.opt.lower() == 'sgd': optimizer = optim.SGD(speech_net.parameters(), lr=args.lr, momentum=args.momentum) else: optimizer = optim.SGD(speech_net.parameters(), lr=args.lr, momentum=args.momentum) train_dataset = Datasets.SpeechYoloDataSet(classes_root_dir=args.train_data, this_root_dir=args.train_data, yolo_config=config_dict, augment=args.augment_data) val_dataset = Datasets.SpeechYoloDataSet(classes_root_dir=args.train_data, this_root_dir=args.val_data, yolo_config=config_dict) sampler_train = Datasets.ImbalancedDatasetSampler(train_dataset) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=False, num_workers=20, pin_memory=args.cuda, sampler=sampler_train) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size,
args = parser.parse_args() args.cuda = args.cuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) model, acc, epoch = load_model(args.model) config_dict = {"C": model.c, "B": model.b, "K": model.k} if args.cuda: print('Using CUDA with {0} GPUs'.format(torch.cuda.device_count())) model = torch.nn.DataParallel(model).cuda() test_dataset = Datasets.SpeechYoloDataSet(classes_root_dir=args.train_data, this_root_dir=args.test_data, yolo_config=config_dict, words_list_file=args.word_list) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=20, pin_memory=args.cuda, sampler=None) range_split = args.theta_range.split('_') start_theta = float(range_split[0]) end_theta = float(range_split[1]) step_theta = float(range_split[2]) loss = loss_speech_yolo.YOLOLoss() # threshold = args.decision_threshold
args = parser.parse_args() args.cuda = args.cuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) model, acc, epoch = load_model(args.model) config_dict = {"C": model.c, "B": model.b, "K": model.k} if args.cuda: print('Using CUDA with {0} GPUs'.format(torch.cuda.device_count())) model = torch.nn.DataParallel(model).cuda() test_dataset = Datasets.SpeechYoloDataSet(classes_root_dir=args.train_data, this_root_dir=args.test_data, yolo_config=config_dict) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=20, pin_memory=args.cuda, sampler=None) range_split = args.theta_range.split('_') start_theta = float(range_split[0]) end_theta = float(range_split[1]) step_theta = float(range_split[2]) loss = loss_speech_yolo.YOLOLoss() # threshold = args.decision_threshold