----------- Learning ------------------ """ weights = 'distance' n_neighbors = 15 # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(norm_data, labels) # DetectionMethods.detect_with_cross_validation(clf, norm_data, labels) """ ------------- Testing ------------- """ norm_test_data, test_labels = Get_normalize_data.main2(final_path, "test_connections.txt") DetectionMethods.detect(clf, norm_test_data, test_labels) X = np.array(norm_data) y = np.array(labels) h = .02 """ ------------- Ploting ------------- """ # Create color maps # cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) # cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) # # Plot the decision boundary. For that, we will assign a color to each # # point in the mesh [x_min, x_max]x[y_min, y_max]. # x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 # y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 # xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
""" Read data model 1 """ X_train, X_test, y_train, y_test = Get_normalize_data.get_all_data(final_path) clf = MLPClassifier(solver='adam', alpha=1e-05, random_state=1) """ Crossvalidation """ DetectionMethods.detect_with_cross_validation(clf, X_train, y_train) """ Learning """ clf.fit(X_train, y_train) """ Detect """ DetectionMethods.detect(clf, X_test, y_test) # score = clf.score(X_test, y_test) # print score
# colsample_bytree=0.8, # objective= 'binary:logistic', # nthread=4, # scale_pos_weight=1, # seed=27) # title = "Learning Curves ( XGBoost s)" model = XGBClassifier( learning_rate=0.1, n_estimators=1000, max_depth=3, min_child_weight=5, gamma=0.1, subsample=0.8, colsample_bytree=0.8, objective='binary:logistic', nthread=4, scale_pos_weight=1, seed=27) """ Crossvalidation """ DetectionMethods.detect_with_cross_validation(model, np_X_train, np_y_train) """ Detect model """ # model = XGBClassifier() model.fit(np_X_train, np_y_train) DetectionMethods.detect(model, np_X_test, np_y_test)