def testImage(image_list):
    global arr1
    global flag
    arr1.clear()
    for index in range(len(image_list)):
        img = io.imread(image_list[index], as_grey=True)

        infile = cv2.imread(image_list[index])
        infile = infile[:, :, 0]
        hues = (np.array(infile) / 255.) * 179
        outimageHSV = np.array([[[b, 255, 255] for b in a]
                                for a in hues]).astype(int)
        outimageHSV = np.uint8(outimageHSV)

        outimageBGR = cv2.cvtColor(outimageHSV, cv2.COLOR_HSV2BGR)

        rgb = io.imread(image_list[index])
        lab = color.rgb2lab(rgb)

        outimageBGR = lab

        for i in range(outimageBGR.shape[0]):
            for j in range(outimageBGR.shape[1]):
                sum = 0
                for k in range(outimageBGR.shape[2]):
                    sum = sum + outimageBGR[i][j][k]
                sum = sum / (3 * 255)
                if (i < img.shape[0] and j < img.shape[1]):
                    img[i][j] = sum

        S = preprocessing.MinMaxScaler((0, 19)).fit_transform(img).astype(int)
        Grauwertmatrix = feature.greycomatrix(
            S, [1, 2, 3], [0, np.pi / 4, np.pi / 2, 3 * np.pi / 4],
            levels=20,
            symmetric=False,
            normed=True)

        arr1.append(feature.greycoprops(Grauwertmatrix, 'contrast'))
        arr1.append(feature.greycoprops(Grauwertmatrix, 'correlation'))
        arr1.append(feature.greycoprops(Grauwertmatrix, 'homogeneity'))
        arr1.append(feature.greycoprops(Grauwertmatrix, 'ASM'))
        arr1.append(feature.greycoprops(Grauwertmatrix, 'energy'))
        arr1.append(feature.greycoprops(Grauwertmatrix, 'dissimilarity'))
        arr1.append(Features.sumOfSquares(Grauwertmatrix))
        arr1.append(Features.sumAverage(Grauwertmatrix))
        arr1.append(Features.sumVariance(Grauwertmatrix))
        arr1.append(Features.Entropy(Grauwertmatrix))
        arr1.append(Features.sumEntropy(Grauwertmatrix))
        arr1.append(Features.differenceVariance(Grauwertmatrix))
        arr1.append(Features.differenceEntropy(Grauwertmatrix))
        arr1.append(Features.informationMeasureOfCorelation1(Grauwertmatrix))
        arr1.append(Features.informationMeasureOfCorelation2(Grauwertmatrix))
    flag = 1
示例#2
0
def pr():
    print('\n')
    print("Contrast                          : %f" % (np.mean(ContrastStats)))
    print("Energy                            : %f" % (np.mean(Energy)))
    print("Dissimilarity                     : %f" % (np.mean(Dissimilarity)))
    print("Correlation                       : %f" % (np.mean(CorrelationtStats)))
    print("Homogeneity                       : %f" % (np.mean(ASMStats)))
    print("Sum of Squares                    : %f" % (np.mean(Features.sumOfSquares(Grauwertmatrix))))
    print("Sum Average                       : %f" % (np.mean(Features.sumAverage(Grauwertmatrix))))
    print("Sum Variance                      : %f" % (np.mean(Features.sumVariance(Grauwertmatrix))))
    print("Sum Entropy                       : %f" % (np.mean(Features.sumEntropy(Grauwertmatrix))))
    print("Entropy                           : %f" % (np.mean(Features.Entropy(Grauwertmatrix))))
    print("Difference Variance               : %f" % (np.mean(Features.differenceVariance(Grauwertmatrix))))
    print("Difference Entropy                : %f" % (np.mean(Features.differenceEntropy(Grauwertmatrix))))
    print("Information measure of corelation1: %f" % (np.mean(Features.informationMeasureOfCorelation1(Grauwertmatrix))))
    print("Information measure of corelation2: %f" % (np.mean(Features.informationMeasureOfCorelation2(Grauwertmatrix))))