示例#1
0
    def calc_ev_ret(self, df_inc, ev_cov, P, eta, alpha):

        if eta.size == 0:
            ev_ret = df_inc.mean().values
        else:
            initialvalue = np.mean(df_inc.T.values, axis=1)
            ev_ret = fin.black_litterman(initialvalue, ev_cov, P, eta, alpha).reshape(-1)

        return ev_ret
示例#2
0
def markowitz_bl_fixrisk(df_inc, P, eta, alpha, bound, target_risk):

    w0 = [1 / len(df_inc.columns)] * len(df_inc.columns)

    bnds = [(bound[i]['lower'], bound[i]['upper']) for i in range(len(bound))]
    ret = df_inc.mean().values
    vol = df_inc.cov().values

    initialvalue = np.mean(df_inc.T.values, axis=1)
    expected_return = fin.black_litterman(initialvalue, vol, P, eta, alpha)
    ret = expected_return.reshape(-1)

    asset_sum1_limit = 0.0
    sum1_limit_assets = []
    for asset in range(len(bound)):
        if bound[asset]['sum1'] != 0.0:
            sum1_limit_assets.append(asset)
            asset_sum1_limit = bound[asset]['sum1']

    cons = [
        {
            'type': 'eq',
            'fun': lambda x: np.sum(x) - 1.0
        },
        {
            'type': 'ineq',
            'fun': lambda x: target_risk - np.sqrt(np.dot(x, np.dot(vol, x)))
        },
    ]
    if asset_sum1_limit > 0.0:
        cons.append({
            'type':
            'ineq',
            'fun':
            lambda x: asset_sum1_limit - np.sum(x[sum1_limit_assets])
        })
    cons = tuple(cons)

    res = scipy.optimize.minimize(risk_budget_objective,
                                  w0,
                                  args=[ret, vol, target_risk],
                                  method='SLSQP',
                                  bounds=bnds,
                                  constraints=cons,
                                  options={
                                      'disp': False,
                                      'eps': 1e-3
                                  })

    final_risk = np.sqrt(np.dot(res.x, np.dot(vol, res.x)))
    final_return = np.dot(res.x, ret)
    final_ws = res.x
    final_sharp = (final_return - Const.rf) / final_risk

    return final_risk, final_return, final_ws, final_sharp
示例#3
0
def strategicallocation(delta, weq, V, tau, P, Q):

    P = np.array(P)
    Q = np.array(Q)

    tauV = tau * V

    Omega = np.dot(np.dot(P, tauV), P.T) * np.eye(Q.shape[0])

    res = fin.black_litterman(delta, weq, V, tau, P, Q, Omega)

    return re
示例#4
0
def asset_allocation(start_date, end_date, largecap_fund, smallcap_fund, P, Q):
    #########################################################################

    delta = 2.5
    tau = 0.05

    ps = []
    for p in P:
        ps.append(np.array(p))

    P = np.array(ps)

    qs = []
    for q in Q:
        qs.append(np.array(q))

    Q = np.array(qs)

    indexdf = data.index_value(start_date, end_date,
                               [const.largecap_code, const.smallcap_code])

    indexdfr = indexdf.pct_change().fillna(0.0)

    indexrs = []
    for code in indexdfr.columns:
        indexrs.append(indexdfr[code].values)

    #print indexdfr

    sigma = np.cov(indexrs)

    #print type(sigma)
    #print sigma
    #print np.cov(indexrs)
    #print indexdfr

    weq = np.array([0.5, 0.5])
    tauV = tau * sigma
    Omega = np.dot(np.dot(P, tauV), P.T) * np.eye(Q.shape[0])
    er, ws, lmbda = fin.black_litterman(delta, weq, sigma, tau, P, Q, Omega)

    sum = 0
    for w in ws:
        sum = sum + w
    for i in range(0, len(ws)):
        ws[i] = 1.0 * ws[i] / sum

    #print er
    indexws = ws
    #print indexws
    #largecap_fund, smallcap_fund = largesmallcapfunds(fund_tags)

    #print largecap_fund
    #risk, returns, ws, sharp = markowitz(
    #print smallcap_fund

    funddf = data.fund_value(start_date, end_date)

    bounds = boundlimit(len(largecap_fund))

    risk, returns, ws, sharp = markowitz(funddf[largecap_fund], bounds)

    largecap_fund_w = {}
    for i in range(0, len(largecap_fund)):
        code = largecap_fund[i]
        largecap_fund_w[code] = ws[i] * indexws[0]

    bounds = boundlimit(len(smallcap_fund))
    risk, returns, ws, sharp = markowitz(funddf[smallcap_fund], bounds)

    smallcap_fund_w = {}
    for i in range(0, len(smallcap_fund)):
        code = smallcap_fund[i]
        smallcap_fund_w[code] = ws[i] * indexws[1]
    '''    
    #平均分配            
    largecap_fund_w = {}
    for code in largecap_fund:
        largecap_fund_w[code] = 1.0 / len(largecap_fund) * indexws[0]

    
    smallcap_fund_w = {}
    for code in smallcap_fund:
        smallcap_fund_w[code] = 1.0 / len(smallcap_fund) * indexws[1]
    '''

    fundws = {}
    for code in largecap_fund:
        w = fundws.setdefault(code, 0)
        fundws[code] = w + largecap_fund_w[code]
    for code in smallcap_fund:
        w = fundws.setdefault(code, 0)
        fundws[code] = w + smallcap_fund_w[code]

#######################################################################

#print largecap
#print smallcap
#print risefitness
#print declinefitness
#print oscillafitness
#print growthfitness
#print valuefitness
#print

    fund_codes = []
    ws = []
    for k, v in fundws.items():
        fund_codes.append(k)
        ws.append(v)

    #for code in largecap:

    return fund_codes, ws