#Designate distributions to sample hyperparameters from C_range = np.power(2, np.arange(-10, 8, dtype=float)) n_features_to_test = [0.85, 0.9, 0.95] clf = TransformedTargetRegressor(regressor=SVR(kernel='linear'), transformer=MinMaxScaler()) #SVM steps = [('scaler', StandardScaler()), ('red_dim', PCA()), ('clf', clf)] pipeline = Pipeline(steps) parameteres = [{ 'scaler': [StandardScaler()], 'red_dim': [PCA(random_state=42)], 'red_dim__n_components': list(n_features_to_test), 'clf__regressor__C': list(C_range) }, { 'scaler': [StandardScaler()], 'red_dim': [None], 'clf__regressor__C': list(C_range) }] results = GSCV.function_GSCV(data_train, labels_train, data_test, labels_test, pipeline, parameteres) #create folder and save save_output.function_save_output(results, name_clf)
'clf__algorithm': ['SAMME', 'SAMME.R'] }, { 'scaler': scalers_to_test, 'red_dim': [SelectPercentile(f_classif, percentile=10)], 'clf__n_estimators': n_estimators, 'clf__learning_rate': lr, 'clf__algorithm': ['SAMME', 'SAMME.R'] }, { 'scaler': scalers_to_test, 'red_dim': [SelectPercentile(mutual_info_classif, percentile=10)], 'clf__n_estimators': n_estimators, 'clf__learning_rate': lr, 'clf__algorithm': ['SAMME', 'SAMME.R'] }, { 'scaler': scalers_to_test, 'red_dim': [None], 'clf__n_estimators': n_estimators, 'clf__learning_rate': lr, 'clf__algorithm': ['SAMME', 'SAMME.R'] }] results = GSCV.function_GSCV(X_train, y_train, X_test, y_test, pipeline, parameteres) #create folder and save save_output.function_save_output(results, name_clf)