示例#1
0
文件: utils.py 项目: nrnb/EPIC
def Goldstandard_from_cluster_File(gsF, foundprots=""):
    clusters = GS.Clusters(need_to_be_mapped=False)
    clusters.read_file(gsF)
    if foundprots != "": clusters.remove_proteins(foundprots)
    gs = GS.Goldstandard_from_Complexes("All")
    gs.complexes = clusters
    gs.make_pos_neg_ppis()
    return gs
示例#2
0
文件: utils.py 项目: nrnb/EPIC
def create_goldstandard(clusters, target_taxid, valprots):
    if target_taxid != "9606" and target_taxid != "":
        orthmap = GS.Inparanoid(taxid=target_taxid)
    else:
        orthmap = ""

    gs = GS.Goldstandard_from_Complexes("Goldstandard")
    gs.make_reference_data(clusters, orthmap, found_prots=valprots)
    return gs
示例#3
0
文件: main.py 项目: shaoxiuma/EPIC
def Goldstandard_from_PPI_File(gsF, foundprots=""):
    out = GS.Goldstandard_from_Complexes("gs")
    gsFH = open(gsF)
    for line in gsFH:
        line = line.rstrip()
        ida, idb, class_label = line.split("\t")[0:3]
        if foundprots != "" and (ida not in foundprots
                                 or idb not in foundprots):
            continue
        edge = "\t".join(sorted([ida, idb]))
        if class_label == "positive":
            out.positive.add(edge)
        else:
            out.negative.add(edge)
    gsFH.close()
    return out
示例#4
0
def cut(args):
    fc, scoreF, outF = args
    if fc == "00000000": sys.exit()
    this_scores = get_fs_comb(fc)
    scoreCalc = CS.CalculateCoElutionScores("", "", "", "", cutoff=0.5)
    empty_gs = GS.Goldstandard_from_Complexes()
    empty_gs.positive = set([])
    empty_gs.negative = set([])
    scoreCalc.readTable(scoreF, empty_gs)
    print scoreCalc.to_predict
    feature_comb = feature_selector([fs.name for fs in this_scores], scoreCalc)
    feature_comb.open()
    outFH = open(outF, "w")
    print >> outFH, "\t".join(feature_comb.scoreCalc.header)
    for i in range(feature_comb.to_predict):
        edge, edge_scores = feature_comb.get_next()
        if edge == "" or edge_scores == []: continue
        print >> outFH, "%s\t%s" % (edge, "\t".join(map(str, edge_scores)))
    outFH.close()
    feature_comb.close()