def pretty_pic(data_hdf5,args): ds = yt.load(data_hdf5) # load data ds.add_field("KaysVx", function=_KaysVx, units="cm/s") ds.add_field("KaysVy", function=_KaysVy, units="cm/s") ds.add_field("KaysVz", function=_KaysVz, units="cm/s") ds.add_field("KaysBx", function=_KaysBx, units="gauss") ds.add_field("KaysBy", function=_KaysBy, units="gauss") ds.add_field("KaysBz", function=_KaysBz, units="gauss") msink=13./32 cs=1. mach=5. rho0=1.e-2 rBH= msink/cs**2/(mach**2+1) sink= InitSink(args.data_sink) sink.coord= dict(x=0.,y=0.,z=0.) #override it center = [0,0,0] width = (float(ds.domain_width[0]), 'cm') Npx= 1000 res = [Npx, Npx] # create an image with 1000x1000 pixels fig,ax= plt.subplots() #sharey=True,sharex=True) #fig.set_size_inches(15, 10) cut_dir='z' if args.twod == 'slice': proj = ds.slice(axis=cut_dir,coord=sink.coord[cut_dir]) else: proj = ds.proj(field="density",axis=cut_dir) frb = proj.to_frb(width=width, resolution=res, center=center) img= np.array(frb['density'])[::-1]/rho0 xlab,ylab='x/rBH','y/rBH' im= ax.imshow(np.log10(img),vmin=np.log10(args.clim[0]),vmax=np.log10(args.clim[1])) ax.autoscale(False) #sink marker ax.scatter((sink.x+1)*Npx/2,(sink.y+1)*Npx/2,s=50,c='black',marker='o') #all sinks #user defined ticks xticks=(Npx*np.array([0.,0.25,0.5,0.75,1.])).astype('int') # xticks_labs= (xticks-500)*rBH/Npx ax.set_xticks(xticks) ax.set_xticklabels(((xticks-Npx/2)*float(args.width_rBH)/Npx).astype('int')) #ax.xaxis.get_ticklocs()/100.) ax.set_yticks(xticks) ax.set_yticklabels(((xticks[::-1]-Npx/2)*float(args.width_rBH)/Npx).astype('int')) #ax.yaxis.get_ticklocs()/100.) ax.set_xlabel(xlab) ax.set_ylabel(ylab) ax.set_title(cut_dir+' '+args.twod) cax = fig.add_axes([0.83, 0.15, 0.02, 0.7]) cbar= fig.colorbar(im, cax=cax) # cbar = fig.colorbar(cax) # ticks=[-1,0,1]) cbar_labels = [item.get_text() for item in cbar.ax.get_yticklabels()] cbar_labels = ['']*len(cbar_labels) cbar_labels[0]= args.clim[0] cbar_labels[-1]= args.clim[1] cbar.ax.set_yticklabels(cbar_labels) if args.twod == 'slice': lab= r'$\mathbf{ \rho/\bar{\rho} }$' else: lab= r'$\mathbf{ \Sigma/\bar{\Sigma} }$' cbar.set_label(r'$\mathbf{ \rho/\bar{\rho} }$',fontsize='xx-large') add_name= 'prettypic' plt.savefig(os.path.join(args.outdir,args.twod+'_'+add_name+'_'+os.path.basename(data_hdf5)+'_.png'))
def get_image(data_hdf5,args): ds = yt.load(data_hdf5) # load data ds.add_field("TestDensity", function=_TestDensity, units="g/cm**3") ds.add_field("KaysVx", function=_KaysVx, units="cm/s") ds.add_field("KaysVy", function=_KaysVy, units="cm/s") ds.add_field("KaysVz", function=_KaysVz, units="cm/s") ds.add_field("KaysBx", function=_KaysBx, units="gauss") ds.add_field("KaysBy", function=_KaysBy, units="gauss") ds.add_field("KaysBz", function=_KaysBz, units="gauss") msink=13./32 cs=1. mach=5. rho0=1.e-2 rBH= msink/cs**2/(mach**2+1) tBH= msink/(mach**2+cs**2)**(3./2) sink= InitSink(args.data_sink) if args.sink_id: sink.set_coord(args.sink_id) center= sink.xyz_for_sid(args.sink_id) width= (args.width_rBH*rBH,'cm') else: sink.coord= dict(x=0.,y=0.,z=0.) #override it center = [0,0,0] width = (float(ds.domain_width[0]), 'cm') Npx= 1000 res = [Npx, Npx] # create an image with 1000x1000 pixels cmaps=dict(inferno=cm.inferno,viridis=cm.viridis,default=None) if args.test_panel: #make quick plot and quit if args.twod == 'projection': p = yt.ProjectionPlot(ds, 'x', 'TestDensity') else: p = yt.SlicePlot(ds, 'x', 'TestDensity') p.set_cmap(field="TestDensity", cmap=cmaps[args.cmap]) p.save(os.path.join(args.outdir,'test_'+args.twod+'_'+os.path.basename(data_hdf5)+'_.png')) sys.exit(0) fig,axes= plt.subplots(1,3) #sharey=True,sharex=True) fig.subplots_adjust(bottom=0.25,wspace=0.2) #,hspace=-0.335) #,hspace=0.05) fig.set_size_inches(20, 7) ax=axes.flatten() for i,cut_dir in zip(range(3),['z','x','y']): if args.twod == 'slice': proj = ds.slice(axis=cut_dir,coord=sink.coord[cut_dir]) else: proj = ds.proj(field="density",axis=cut_dir) frb = proj.to_frb(width=width, resolution=res, center=center) img= np.array(frb['density'])[::-1]/rho0 if cut_dir == 'x': Vhoriz,Vvert= np.array(frb['KaysVy'])[::-1], np.array(frb['KaysVz'])[::-1] Bhoriz,Bvert= np.array(frb['KaysBy'])[::-1], np.array(frb['KaysBz'])[::-1] xlab,ylab='y [rBH]','z [rBH]' elif cut_dir == 'y': Vhoriz,Vvert= np.array(frb['KaysVx'])[::-1], np.array(frb['KaysVz'])[::-1] Bhoriz,Bvert= np.array(frb['KaysBx'])[::-1], np.array(frb['KaysBz'])[::-1] xlab,ylab='x [rBH]','z [rBH]' else: Vhoriz,Vvert= np.array(frb['KaysVx'])[::-1], np.array(frb['KaysVy'])[::-1] Bhoriz,Bvert= np.array(frb['KaysBx'])[::-1], np.array(frb['KaysBy'])[::-1] xlab,ylab='x [rBH]','y [rBH]' if args.clim: im= ax[i].imshow(np.log10(img),cmap=cmaps[args.cmap],\ vmin=np.log10(args.clim[0]),vmax=np.log10(args.clim[1])) else: im= ax[i].imshow(np.log10(img),cmap=cmaps[args.cmap]) ax[i].autoscale(False) #sink marker if args.sink_id: ax[i].scatter(Npx/2,Npx/2,s=50,c='white',marker='o') #put sink at center else: ax[i].scatter((sink.x+1)*Npx/2,(sink.y+1)*Npx/2,s=50,c='white',marker='o') #all sinks #velocity arrows X, Y = np.meshgrid(np.arange(0,Npx), np.arange(0,Npx)) skip= int(Npx/10.) Q = ax[i].quiver(X[::skip, ::skip], Y[::skip, ::skip], Vhoriz[::skip, ::skip], Vvert[::skip, ::skip], pivot='mid', color='white', units='inches') #bfield integrateed streamlines if args.nf: xmin,xmax= 0.,float(Npx-1) dx=[1.,1.,1.] ft_from_center= Npx*args.ft_from_center/args.width_rBH #height of hline of footpoints from top of image points,xf,yf= my_streamlines(Bhoriz,Bvert, xmax,xmin,dx,args.nf,ft_from_center,\ ft_circle=True) #ax[i].plot(xf,yf,marker='o',color='white',linestyle='None') for j in range(0,len(points)): xdata = (points[j])[:,0] ydata = (points[j])[:,1] ind = np.where(xdata>xmin) xdata=xdata[ind]; ydata=ydata[ind] ind = np.where(xdata<xmax) xdata=xdata[ind]; ydata=ydata[ind] ind = np.where(ydata>xmin) xdata=xdata[ind]; ydata=ydata[ind] ind = np.where(ydata<xmax) xdata=xdata[ind]; ydata=ydata[ind] print "N pts in streamline= ",len(xdata) ax[i].plot(xdata,ydata,color='#33CC33',lw=2) #finish labeling axes xticks=(Npx*np.array([0.,0.25,0.5,0.75,1.])) #.astype('int') ax[i].set_xticks(xticks) ax[i].set_yticks(xticks) ax[i].set_yticklabels(((xticks[::-1]-Npx/2.)*float(args.width_rBH)/Npx)) #.astype('int')) ax[i].set_xticklabels(((xticks-Npx/2)*float(args.width_rBH)/Npx)) #.astype('int')) ax[i].get_xaxis().set_tick_params(direction='out') ax[i].get_yaxis().set_tick_params(direction='out') ax[i].set_ylabel(ylab) ax[i].set_xlabel(xlab) ax[i].set_title(cut_dir+' '+args.twod) time= (float(ds.current_time)-0.8)/tBH #0.8 is simulation time when insert sinks for all beta runs ax[0].text(0.1,1.1,"Time: %.1f tBH" % time,transform=ax[0].transAxes,ha='center',va='center',\ fontsize='xx-large') #cax = fig.add_axes([0.9, 0.15, 0.02, 0.7]) cax = fig.add_axes([0.25,0.1, 0.5, 0.05]) cbar= fig.colorbar(im, cax=cax,orientation='horizontal') # cbar = fig.colorbar(cax) # ticks=[-1,0,1]) if args.clim: #cbar_labels = [item.get_text() for item in cbar.ax.get_xticklabels()] #cbar_labels = ['']*len(cbar_labels) #print "cbar_labels= ",cbar_labels,"its len= ",len(cbar_labels) #cbar_labels[0]= args.clim[0] #cbar_labels[-1]= args.clim[1] #myticks= np.array([args.clim[0],1e-1,1e0,1e1,1e2,args.clim[1]]) myticks= np.logspace(np.log10(args.clim[0]),np.log10(args.clim[1]),6) cbar.set_ticks(np.log10(myticks)) cbar.ax.set_xticklabels(myticks) #[args.clim[0],1e-1,1e0,1e1,1e2,args.clim[1]]) if args.twod == 'slice': lab= r'$\mathbf{ \rho/\bar{\rho} }$' else: lab= r'$\mathbf{ \Sigma/\bar{\Sigma} }$' cbar.set_label(r'$\mathbf{ \rho/\bar{\rho} }$',fontsize='xx-large') if args.sink_id: add_name= 'sid'+str(args.sink_id) else: add_name= 'fullbox' plt.savefig(os.path.join(args.outdir,args.twod+'_'+add_name+'_'+os.path.basename(data_hdf5)+'_.png'))