TestFile = u"Data/Social/Test.txt" UserItemFile = u"Data/UserItem.csv" Social_Data = np.loadtxt(SocialFile, delimiter=',') Test_Data = np.loadtxt(TestFile, delimiter=',') UserItem_Data = np.loadtxt(UserItemFile, delimiter=',', usecols=(1, 2)) print "Social_Data's is Shape :" + str(Social_Data.shape) print "Test_Data's is Shape :" + str(Test_Data.shape) print "UserItem_Data's is Shape :" + str(UserItem_Data.shape) print '\n' MatrixAdjacency_Social, MaxNode_Social = Initialize.Initialize_Social( Social_Data) MatrixAdjacency_Test = Initialize.Initialize_Test(Test_Data, MaxNode_Social) MatrixAdjacency_UserItem = Initialize.Initialize_UserItem(UserItem_Data) print 'MatrixAdjacency_Social' print MatrixAdjacency_Social print 'MatrixAdjacency_Test' print MatrixAdjacency_Test print 'MatrixAdjacency_UserItem' print MatrixAdjacency_UserItem T_MatrixAdjacency_UserItem = MatrixAdjacency_UserItem.T array_Degree_User = sum(T_MatrixAdjacency_UserItem) MatrixDegree_User = np.diag(array_Degree_User) INV_MatrixDegree_User = np.linalg.inv(MatrixDegree_User) array_Degree_Item = sum(MatrixAdjacency_UserItem) MatrixDegree_Item = np.diag(array_Degree_Item) INV_MatrixDegree_Item = np.linalg.inv(MatrixDegree_Item)
# ZhiHu_DB.rollback() # print 'error'+str(list[0][0])+str(list[0][1]) ZhiHu_DB.close() import os import MySQLdb import Initialize import numpy as np import Evaluation_Indicators.AUC # MatrixAdjacency_Net,MaxNodeNum = Initialize_Divide.Init(NetFile),delimiter=',' import similarity_indicators.CommonNeighbor NetFile = u'Data/Followees.txt' MatrixAdjacency_Net = Initialize.Initialize_UserItem( np.loadtxt(NetFile, delimiter=',')) # print MatrixAdjacency_Net.shape # temp = np.diag(MatrixAdjacency_Net) # print np.argwhere(temp != 0) m = 8 # for m in range(MatrixAdjacency_Net.shape[0]): while m == 8: Array = MatrixAdjacency_Net[m] tempCN = [] for n in range(MatrixAdjacency_Net.shape[0]): if m != n: tempArray = MatrixAdjacency_Net[n] CN_Array = Array * tempArray CN = np.argwhere(CN_Array != 0) CN.shape = (CN.shape[0])