示例#1
0
 def createKmlV1(self, kmlFileName="output"):
     """ 
     Creates a detailed KML output (one placemark per node)
     placed in 3 folders ("created","modified","deleted")
     Suitable only for reasonably small osc files (not days)
     Args: -output name    
     """
     print "Creating KML file..."
     myKml = KML.KML(kmlFileName)
     statsDescription = self.globalStats()
     myKml.placemarkDescriptive(description=statsDescription,
                                name=myKml.kmlTitle)
     for aType in ["create", "modify", "delete"]:
         myKml.folderHead(aType)
         for node in self.osmNodes:
             if node["type"] == aType:
                 if self.verbose == True:
                     print node["latitude"], node["longitude"],node["idNode"],\
                                  node["user"], node["timestamp"],node["type"]
                 if node["user"] == None: node["user"] = "******"
                 myKml.placemark(node["latitude"], node["longitude"],
                                 node["idNode"], node["user"],
                                 node["timestamp"], node["type"])
         myKml.folderTail()
     myKml.close()
示例#2
0
 def createKmlV0(self, kmlFileName="output"):
     """
     The lightest kml version possible with only one "summarized" placemark
     per user representing the last known position. 
     Args:
         kmlFileName: 
             the name of the resulting kml (the osc filename per default)
     Output: 
         Creates a kml file
     """
     print "Creating KML file version 0 ..."
     myKml = KML.KML(kmlFileName)
     statsDescription = self.globalStats()
     myKml.placemarkDescriptive(description=statsDescription,
                                name=myKml.kmlTitle)
     for userName, userStat in sorted(self.statsUsers.iteritems()):
         myKml.folderHead("<![CDATA["+unicode(userName)\
                          +"("+str(self.statsUsers[userName][0])+")]]>")
         thisLat = 0
         thisLong = 0
         for pathType in [0, 1, 2]:
             if len(self.statsUsers[userName][4][pathType]) != 0:
                 thisLat = self.statsUsers[userName][4][pathType][-1][0]
                 thisLong = self.statsUsers[userName][4][pathType][-1][1]
                 if pathType == 0:
                     lineStyle = "lineStyleCreated"
                     type = "create"
                 if pathType == 1:
                     lineStyle = "lineStyleModified"
                     type = "modify"
                 if pathType == 2:
                     lineStyle = "lineStyleDeleted"
                     type = "delete"
         userNodesStat = [
             self.statsUsers[userName][0], self.statsUsers[userName][1],
             self.statsUsers[userName][2], self.statsUsers[userName][3]
         ]
         myKml.placemarkSummary(thisLat, thisLong, userName, type,
                                userNodesStat)
         myKml.folderTail()
     myKml.close()
示例#3
0
def outputStops(stopDF, fp):
    KML.writeKMLTurnPairHeader(fp)
    for index, row in stopDF.iterrows():
        writeKMLPlaceStop(objectify(row), fp)
    KML.writeKMLTurnPairTrailer(fp)
示例#4
0
                    "\t" + str(snr2).replace(".", ",") + "\t" + str(snr_lin2).replace(".", ",") + \
                    "\t" + str(Xd1).replace(".", ",") + "\t" + str(Yd1).replace(".", ",") + "\t" + str(Zd1).replace(".",",") + \
                    "\t" + str(Bd).replace(".", ",") + "\t" + str(Ld).replace(".", ",") + "\t" + str(Hd).replace(".",",") + \
                    "\t" + str(azimut2).replace(".",",") + "\t" + str(psi1).replace(".",",") + "\n"

            xls_obs.write(zapis)
            zoznam_xyz = [cas, Xd1, Yd1, Zd1]
            zoznam_blh = [cas, Bd, Ld, Hd, cd_obs, elev_uhol_rad, azimut2]
            zoznam_suradnic_xyz.append(zoznam_xyz)
            zoznam_suradnic_blh.append(zoznam_blh)
            break
xls_obs.close()
kruh = kruh.fkruznica(B, L, nazov)
#StanicaDruzica = SHP.fLineShp(zoznam_suradnic_blh, nazov)
orezanie = priesecnik.fIntersect(kruh, zoznam_suradnic_blh, nazov)
kml_point = KML.fCreatePointKML(kruh, nazov)
interval_a = [[80, 100], [160,215]]
az_zoznam = []
for i in range(1,len(orezanie)):
    az = orezanie[i][4]
    if (az > interval_a[0][0] and az < interval_a[0][1]) or (az > interval_a[1][0] and az < interval_a[1][1]):
        elev_uhol_rad = orezanie[i][5]
        az = math.radians(orezanie[i][6])
        # vypocet podla very snow depth.....
        #q = (lambda2*h)/math.sin(elev_uhol_rad)
        #w = math.pow(lambda2/(2*math.sin(elev_uhol_rad)), 2)
        #b = math.sqrt(q+w)              # vedlajsia os elipsy
        #a = b/math.sin(elev_uhol_rad)   # hlavna os elipsy

        n=1
        d =n*lambda1/2
示例#5
0
def Plot(overpass, filename, min_xco2=KML.default_cmin, max_xco2=KML.default_cmax, secondary_sources=[], arrow_scale=0.02, stability="new", wind_source="Average", wind_adjustment=0., f_plume=0.10, f_background=0.01, offset=3.e3, y_max_positive=50.e3, y_max_negative=50.e3, y_min_positive=0., y_min_negative=0., direction='y', x_max=75.e3, snr_strong_co2_min=None, chi_squared_max=None, albedo_min=None, albedo_max=None, outcome_flags={1,2}, surface_pressure_min=None, surface_pressure_max=None, lon_thresh=0.5, lat_thresh=0.5, bias_correction='corrected', npoints=500, width=0.5, height=None, labelsize=Colours.default_fontsize, x=0.05, wind_arrow_sources=['MERRA', 'ECMWF', 'GEM', 'Average']):
    """Creates a KML file for an overpass with parameters as specified.
    
    If xco2 limits are default values, no new colour bar is made.
    Otherwise, will make a new colour bar and save it alongside the
    kml on the server.
    
    Parameters for defining the plume and background are included because
    the extended data for each polygon contains a flag for whether each
    point is in the plume, in the background, or in neither.
    
    Polygons are plotted for 'npoints' points on either side
    of the box defined by the lat and lon thresholds.
    """
    print "Making KML for",overpass.info
    if overpass.FullFile=="":
        raise ValueError("Corrupt overpass file")

    # Bundle together arguments that need to be passed to plume model functions
    # For determining background:
    bg_kwargs = {'background_factor':f_background,
                'ymax_positive':y_max_positive,
                'ymax_negative':y_max_negative,
                'ymin_negative':y_min_negative,
                'ymin_positive':y_min_positive,
                'offset':offset,
                'sign':direction
            }
    # For determining in plume points:
    plume_kwargs = {'plume_factor':f_plume,
                    'xmax':x_max
                }
    
    # Args to pass to full_file.quality(i,**kwargs) method
    quality_args = {'chi_squared_max':chi_squared_max,
                    'snr_strong_co2_min':snr_strong_co2_min,
                    'albedo_min':albedo_min,
                    'albedo_max':albedo_max,
                    'outcome_flags':outcome_flags,
                    'surface_pressure_min':surface_pressure_min,
                    'surface_pressure_max':surface_pressure_max
                    }
    
    # parse bias_correction argument
    if bias_correction not in File.allowed_bias_correction:
        type_err = "'bias_correction' argument must be one of %s"
        raise TypeError(type_err % ', '.join(File.allowed_bias_correction))
        
    # The co2 variable to read; ex, 'corrected_xco2', 'S31_xco2'
    co2 = bias_correction + "_xco2"
    try:
        wind = getattr(overpass,wind_source)
    except AttributeError:
        raise AttributeError("'wind_source' must be one of %s" % ', '.join(valid_winds))
    
    # make arrow_lat, arrow_lon the average lat, lon weighted by emissions
    if secondary_sources:
        secondary_lats = [second.lat for second in secondary_sources]
        secondary_lons = [second.lon for second in secondary_sources]
        all_lats = [overpass.lat] + secondary_lats
        all_lons = [overpass.lon] + secondary_lons
        all_emissions = [overpass.get_emissions()(Units._model_units)] + \
            [second.get_emissions(overpass)(Units._model_units) for second in secondary_sources]
        arrow_lat = numpy.average(all_lats, weights=all_emissions)
        arrow_lon = numpy.average(all_lons, weights=all_emissions)
        print "Using coordinate ({0}, {1}) for wind arrows".format(arrow_lat, arrow_lon)
    else:
        arrow_lat, arrow_lon = overpass.lat, overpass.lon
 
    # Use KML module to make the KML
    kml_description = overpass.strftime(KML.modis_description_fmt)
    Map = KML.KML(description=kml_description)
    oco2_name = "OCO-2 Data"
    oco2_description = "Data from OCO-2 v7 Full Files with '%s' "\
    "bias correction" % bias_correction
    
    OCO2_folder = KML.Folder(oco2_name, oco2_description)
    Map.add_folder(OCO2_folder)
    warn_level_folders = {} # dictionary to be able to update the folders
    for wl in range(21):
        folder_name = "Warn Level %d" % wl
        folder_description = "Lite File Warn Level %d" % wl
        folder = KML.Folder(folder_name, folder_description)
        OCO2_folder.add_object(folder)
        warn_level_folders[wl]=folder
        
    wind_arrows = KML.Overlay.wind_arrow(overpass,lat=arrow_lat,
                                         lon=arrow_lon,size=arrow_scale,
                                         sources=wind_arrow_sources)
    height = height if height else (1.1/5.)*width
    cbar = Colours.colour_bar('', cmin=min_xco2, cmax=max_xco2, fontsize=labelsize)
    colour_scale = KML.Overlay.colour_scale(cbar, width=width, height=height, x=x)
    Map.add_object(wind_arrows)
    Map.add_object(colour_scale)
    
    print('Opening Full File; Performing Bias Correction')
    full_file = File.full(overpass)
    lite_file = File.lite(overpass)
    
    # warn_dict maps a sounding id to a warn level
    warn_dict = {lite_file.sounding_id[n]:lite_file.warn_level[n]
                                    for n in range(len(lite_file))}
    
    lon = overpass.lon
    lat = overpass.lat
    
    close_indices = []
    for i in range(len(full_file)):
        lon_i = full_file.retrieval_longitude[i]
        lat_i = full_file.retrieval_latitude[i]
        dlon = abs(lon_i - overpass.lon)%360
        dlat = abs(lat_i - overpass.lat)%360
        if dlon<=lon_thresh and dlat<=lat_thresh:
          close_indices.append(i)
        i+=1
    
    # (k_min, k_max) are limits on what points to plot
    k_min = max(0,close_indices[0]-npoints)
    k_max = min(len(full_file),close_indices[-1]+npoints)
    
    # plume-model parameters
    u = wind.speed
    F = 1.0 # actual emissions are not important for background
    a = overpass.a if stability=="new" else overpass.a_old
    
    x_offset, y_offset = full_file.get_offset(overpass, wind)
    secondary_offsets = full_file.get_secondary_offset(overpass, wind,
                                    secondary_sources=secondary_sources)
    
    print('Adding polygons to KML File')
    count_plume_points = 0
    count_bg_points = 0
    for k in range(k_min,k_max):
        lats = full_file.retrieval_vertex_latitude[k,0,:]
        lons = full_file.retrieval_vertex_longitude[k,0,:]
        sounding_xco2 = full_file.corrected_xco2[k]
        sounding_id = full_file.id[k]
        sounding_lat = full_file.retrieval_latitude[k]
        sounding_lon = full_file.retrieval_longitude[k]
        
        sounding_colour = Colours.Colour(sounding_xco2, vmin=min_xco2,
                                                        vmax=max_xco2)
        
        if sounding_id in warn_dict:
            warn_level = warn_dict[sounding_id]
        else:
            warn_level=20
        
        point = Geometry.CoordGeom(wind)
        sounding_x, sounding_y = point.coord_to_wind_basis(lat, lon, 
                                                    sounding_lat, sounding_lon)
        
        data = KML.Data()
        data.get_data(k, full_file)
        wl_data = data.add_new_data('Warn Level',warn_level)
        posn_data = data.add_new_data('Wind Basis Coord',(sounding_x,sounding_y))
        
        data.add_new_data('Full File', os.path.split(overpass.FullFile)[1])
        data.add_new_data('Lite File', os.path.split(overpass.LiteFile)[1])
        data.add_new_data('Observation Mode', overpass.observation_mode)
        data.add_new_data('Latitude', sounding_lat)
        data.add_new_data('Longitude', sounding_lon)
        
        dist = ((sounding_x-x_offset)*(sounding_x-x_offset) + 
                (sounding_y-y_offset)*(sounding_y-y_offset))**0.5
        
        in_plume = PlumeModel.InPlume(sounding_x, sounding_y, u, F, a,
                                      **plume_kwargs)
        in_background = PlumeModel.InBackground(sounding_x, sounding_y, dist,
                                                u, F, a, **bg_kwargs)
        for (ind, second) in enumerate(secondary_sources):
            x0,y0 = secondary_offsets[ind]
            xs,ys = point.coord_to_wind_basis(second.lat, second.lon, sounding_lat, sounding_lon)
            second_dist = point.cartesian_distance((xs,ys),(x0,y0))
            in_secondary_plume = PlumeModel.InPlume(xs, ys, u, 1.0, a, **plume_kwargs)
            in_secondary_bg = PlumeModel.InBackground(xs, ys, second_dist, u, 1.0, a, **bg_kwargs)
            in_plume = in_plume or in_secondary_plume
            in_background = in_background and in_secondary_bg
        
        if in_plume:
            model_status = KML.DataPoint('Notes','In Plume Point')
            if full_file.quality(k, **quality_args):
                count_plume_points+=1
        elif in_background:
            model_status = KML.DataPoint('Notes','Background Point')
            if full_file.quality(k, **quality_args):
                count_bg_points+=1
        else:
            model_status = KML.DataPoint('Notes','None')
        data.add_data_field(model_status)
        
        quality = full_file.quality(k, **quality_args)
        data.add_new_data("Quality Check", str(quality))
        poly_col = sounding_colour.cformat(Colours.Colour.GE)
        sounding_polygon = KML.Polygon(lats, lons, sounding_id, poly_col)
        sounding_polygon.add_data(data)
        warn_level_folders[warn_level].add_object(sounding_polygon)

    Map.write(filename)
    print "KML saved as", filename
    print "Done Overpass"
示例#6
0
    def createKmlV2(self,
                    kmlFileName="output",
                    heightFactor=0,
                    threshold=0.005):
        """
        A version based on lines and polygons instead of placemarks
        Args:
            kmlFileName: 
                the name of the resulting kml (the osc filename per default)
            threshold:
                lat or long detla to link together the nodes (they aer not ways) to 
                better visualize that this nodes belong to the same user. 
        Output:
            Creates a kml file
        """

        print "Creating KML file..."
        myKml = KML.KML(kmlFileName)
        statsDescription = self.globalStats()
        myKml.placemarkDescriptive(description=statsDescription,
                                   name=myKml.kmlTitle)

        for userName, userStat in sorted(self.statsUsers.iteritems()):
            myKml.folderHead("<![CDATA["+unicode(userName)\
                             +"("+str(self.statsUsers[userName][0])+")]]>")
            for pathType in [0, 1, 2]:
                ## Extract created nodes-"path" for this user
                # cut subpaths if next node is above the threshold
                lonThreshold = threshold
                latThreshold = threshold
                #
                paths = []  # list of cut paths
                firstNode = True
                thisPath = ""
                thisNode = ""
                for coordinate in self.statsUsers[userName][4][pathType]:
                    thisLat = coordinate[0]
                    thisLong = coordinate[1]
                    thisNode=thisLong+","+thisLat+","\
                    +str(heightFactor)+" "
                    if firstNode == True:
                        thisPath += thisNode
                        prevLat = thisLat
                        prevLong = thisLong
                        firstNode = False
                    else:
                        #distanceThreshold=sqrt((thisLat-prevLat)**2 + (thisLong-prevLong)**2)
                        dLon = abs(float(thisLong) - float(prevLong))
                        dLat = abs(float(thisLat) - float(prevLat))
                        if (dLon > lonThreshold) and (dLat > latThreshold):
                            #print dLat,
                            paths.append(thisPath)
                            thisPath = ""
                        elif (dLon < lonThreshold) and (dLat < latThreshold):
                            thisPath += thisNode
                        prevLat = thisLat
                        prevLong = thisLong
                paths.append(thisPath + thisNode)

                #print paths
                #if len(self.statsUsers[userName][4][0])!=0: pathCreated=pathCreated+thisNode
                if pathType == 0:
                    lineStyle = "lineStyleCreated"
                    genre = "Created"
                if pathType == 1:
                    lineStyle = "lineStyleModified"
                    genre = "Modified"
                if pathType == 2:
                    lineStyle = "lineStyleDeleted"
                    genre = "Deleted"
                trackCut = 1
                for path in paths:
                    if path != "":
                        myKml.placemarkPath(pathName=genre + "P" +
                                            str(trackCut),
                                            coordinates=path,
                                            style=lineStyle)
                        trackCut += 1
            #if userName ==None: print "Anonymous users detected"
            myKml.folderTail()
        myKml.close()
示例#7
0
def plot(file, output_file, time, lat_range):
    """Makes KML files for mapping OCO-2 L1 data.
    
    time must be formatted as YYYY-mm-dd
    """

    print "Opening file", file
    L1_data = h5py.File(file, 'r')

    datasets = {}
    for (name, path) in file_paths.iteritems():
        datasets[name] = L1_data[path]

    dim = len(datasets['vertex_latitude'])

    kml_description = KMLFormats.oco2_header_description.format(time)
    print "Making KML"
    kml = KML.KML(description=kml_description)
    root_folder = KML.Folder('Footprint Outlines')
    kml.add_folder(root_folder)

    for i in range(dim):
        for j in range(8):
            sounding_lat = datasets['sounding_latitude'][i, j]
            if lat_range[0] <= sounding_lat <= lat_range[1]:
                lats = datasets['vertex_latitude'][i, j][0]
                lons = datasets['vertex_longitude'][i, j][0]
                sounding_lon = datasets['sounding_longitude'][i, j]
                solar_zenith = datasets['sounding_solar_zenith'][i, j]
                solar_azimuth = datasets['sounding_solar_azimuth'][i, j]
                sounding_zenith = datasets['sounding_zenith'][i, j]
                sounding_azimuth = datasets['sounding_azimuth'][i, j]
                op_mode = datasets['operation_mode'][0]

                poly = KML.Polygon(lats,
                                   lons,
                                   i + j,
                                   poly_fill_colour,
                                   outline=True)
                poly.add_data(KML.DataPoint('Sounding Latitude', sounding_lat))
                poly.add_data(KML.DataPoint('Sounding Longitude',
                                            sounding_lon))
                poly.add_data(KML.DataPoint('Solar Zenith Angle',
                                            solar_zenith))
                poly.add_data(
                    KML.DataPoint('Solar Azimuth Angle', solar_azimuth))
                poly.add_data(
                    KML.DataPoint('Sounding Zenith Angle', sounding_zenith))
                poly.add_data(
                    KML.DataPoint('Sounding Azimuth Angle', sounding_azimuth))
                poly.add_data(KML.DataPoint('File', os.path.split(file)[1]))
                poly.add_data(KML.DataPoint('Operation Mode', op_mode))

                root_folder.add_object(poly)
    kml.write(output_file)
    L1_data.close()
    print "Saved file as", output_file
示例#8
0
            locationUpdate = LocationData.translateGPRMC(line)
            if locationUpdate:
                if len(locationUpdates) > 0:
                    lastLocation = locationUpdates[len(locationUpdates) - 1]
                    if lastLocation.lon == locationUpdate.lon and lastLocation.lat == locationUpdate.lat:
                        continue
                    else:
                        locationUpdates.append(locationUpdate)
                else:
                    locationUpdates.append(locationUpdate)
            else:
                continue

    return locationUpdates


locationUpdates = processFile(inputFile)
data = pd.DataFrame.from_records([loc.toDict() for loc in locationUpdates])
data.to_csv(dataOutputFile, index_label='index')
turnPairs = DetectLeftTurns.findLeftTurns(locationUpdates)
print("LEFT TURNS:")
for turnPair in turnPairs:
    print(
        f"-----\n{turnPair[0].lat}, {turnPair[0].lon}\n{turnPair[1].lat}, {turnPair[1].lon}\n)"
    )

# Write out path of car
KML.writeKMLPathFile(locationUpdates, outputPathFile)
# write out points for left turns
KML.writeKMLTurnPointsFile(turnPairs, outputPointsFile)
示例#9
0
import KML

map = KML.KML()
# style = KML.LineStyle(id = 'MyStyleId')

# ls = KML.LineString('-122.364383,37.824664,0 -122.364152,37.824322,0', style=style)

# map.add_object(ls)

# map.write('test.kml')

lats = [30, 31, 31, 30, 30]
lons = [-110, -110, -111, -111, -110]
alts = [100, 110, 200, 310, 100]
vs = zip(lons, lats)

vouter = [(-77.05788457660967, 38.87253259892824, 100),
          (-77.05465973756702, 38.87291016281703, 100),
          (-77.05315536854791, 38.87053267794386, 100),
          (-77.05552622493516, 38.868757801256, 100),
          (-77.05844056290393, 38.86996206506943, 100),
          (-77.05788457660967, 38.87253259892824, 100)][::-1]

vinner = [(-77.05668055019126, 38.87154239798456, 100),
          (-77.05542625960818, 38.87167890344077, 100),
          (-77.05485125901024, 38.87076535397792, 100),
          (-77.05577677433152, 38.87008686581446, 100),
          (-77.05691162017543, 38.87054446963351, 100),
          (-77.05668055019126, 38.87154239798456, 100)][::-1]

couter = KML.Coord(vouter)
    while (i < max):
        currentDate = str(year) + "-" + str(month) + "-" + str(day)
        day = day - 1
        # Out of calendar range, so the last day of the previous month must be found.
        if (day < 1):
            month = month - 1
            # Month can just be set to December. We already know the calendar month range.
            # Year is also just decremented by 1.
            if (month < 1):
                month = 12
                year = year - 1
            # monthrange returns a tuple, so we want the upper bound returned.
            day = monthrange(year, month)[1]
        previousDate = str(year) + "-" + str(month) + "-" + str(day)
        weather = weatherbit.get_previous_forecast(lat, long, previousDate,
                                                   currentDate)
        #print weather
        total_precip = total_precip + weather[0]
        total_avg_temp = total_avg_temp + weather[1]
        i = i + 1

    # Find the average for precipitation and temperature for all days in the data.
    total_precip = total_precip / max
    total_avg_temp = total_avg_temp / max
    # Create the City object using the gathered data and store it in a list.
    City = city.City(geocoding[0], geocoding[1], geocoding[2], total_precip,
                     total_avg_temp)
    city_objects_list.append(City)

kml.generate_kml_file(city_objects_list)