示例#1
0
def preprocess(feature_abstract_method):
    # X_raw = raw_data.iloc[:, 1:]
    # y_raw = raw_data['label']
    # X_train, X_test, y_train, y_test = train_test_split(X_raw, y_raw, test_size=0.2)
    # X_train.to_csv('x_train.csv')
    # X_test.to_csv('x_test.csv')
    # y_train.to_csv('y_train.csv')
    # y_test.to_csv('y_test.csv')
    X_train = pd.read_csv('x_train.csv', index_col=0)
    X_test = pd.read_csv('x_test.csv', index_col=0)
    y_train = pd.read_csv('y_train.csv', index_col=0, header=None)
    y_test = pd.read_csv('y_test.csv', index_col=0, header=None)
    if (feature_abstract_method == 'LBP'):
        X_train = LBP.lbp_extract(X_train)
        X_test = LBP.lbp_extract(X_test)
    elif (feature_abstract_method == 'PCA'):
        X_train, X_test = PCA.PCA_extract(X_train, X_test)
    elif (feature_abstract_method == 'skeleton'):
        X_train = SKELETON.skeleton_extract(X_train)
        X_test = SKELETON.skeleton_extract(X_test)
    elif (feature_abstract_method == 'grid'):
        X_train = GRID.grid_extract(X_train)
        X_test = GRID.grid_extract(X_test)
    elif (feature_abstract_method == 'hog'):
        X_train = HOG.hog_extract(X_train)
        X_test = HOG.hog_extract(X_test)
    return X_train, X_test, y_train, y_test
示例#2
0
def cargar_datos(PATH_POSITIVE, PATH_NEGATIVE):
    
    data = []
    clases = []    

    # Casos positivos
    counter_positive_samples = 0

    for filename in os.listdir(PATH_POSITIVE):
        if filename.endswith(IMAGE_EXTENSION):
            filename = PATH_POSITIVE+filename
            img = cv2.imread(filename)
            hog = cv2.HOGDescriptor()
            descriptor_1 = hog.compute(img)
            lbp = LBP.LocalBinaryPattern(img)
            descriptor_2 = lbp.compute_lbp_clasic()
            #descriptor = lbp.compute_lbp_uniform()
            descriptor = np.concatenate((descriptor_1, descriptor_2))
            data.append(descriptor)
            clases.append(1)
            counter_positive_samples += 1
            print("Leidas " + str(counter_positive_samples) + " imágenes de -> peatones")

    print("Leidas " + str(counter_positive_samples) + " imágenes de -> peatones")

    print(np.shape(data))
    # Casos negativos
    counter_negative_samples = 0
    for filename in os.listdir(PATH_NEGATIVE):
        if filename.endswith(IMAGE_EXTENSION):
            filename = PATH_NEGATIVE+filename
            img = cv2.imread(filename)
            hog = cv2.HOGDescriptor()
            descriptor_1 = hog.compute(img)
            lbp = LBP.LocalBinaryPattern(img)
            descriptor_2 = lbp.compute_lbp_clasic()
            #descriptor = lbp.compute_lbp_uniform() 
            descriptor = np.concatenate((descriptor_1, descriptor_2))
            data.append(descriptor)
            clases.append(0)
            counter_negative_samples += 1
            print("Leidas " + str(counter_negative_samples) + " imágenes de -> fondo")

    print("Leidas " + str(counter_negative_samples) + " imágenes de -> fondo")

    print(np.shape(data))

    return np.array(data), np.array(clases)
示例#3
0
def recognize(cf, img):
    # caricamento dei vari dataset
    gallery_target = np.load("npy_db/gallery_target.npy")
    histogram_gallery_data = np.load("npy_db/histogram_gallery_data.npy")
    gallery_thresholds = np.load("npy_db/gallery_thresholds.npy")
    users = pd.read_csv('dataset_user.csv', index_col=[0])
    cf_list = users['Codice Fiscale']

    # controlla se l'utente esiste
    if not cf_list.tolist().__contains__(cf):
        print("UTENTE NON PRESENTE! Il codice fiscale inserito è:", cf)
        return None, 0, None

    # inizializzazione delle variabili che conterranno i dati del paziente e l'indice in cui si trova in dataset_user
    user = None
    index = cf_list.tolist().index(cf)

    # l'immagine in input viene normalizzata per poter utilizzare LBP e ottenerne l'istogramma relativo
    norm_image = cv2.normalize(img, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
    norm_image = norm_image.astype(np.uint8)
    lbp = LBP.Local_Binary_Pattern(1, 8, norm_image)
    hist = lbp.createHistogram(lbp.compute_lbp())

    # calcola la corrispondenza massima tra l'istogramma dell'immagine in input e quelli delle immagini nella galleria dell'utente
    val = topMatch(cf, gallery_target, histogram_gallery_data, hist)

    # se la similairtà massima è maggiore o uguale alla soglia adattativa del paziente, l'identità viene verificata
    if val >= gallery_thresholds[index]:
        user = users.iloc[index]

    # ritorna le informazioni del paziente e l'indice in cui si trova in dataset_user
    return user, index, user
示例#4
0
    def descriptor(name, arg):
        model = None
        if name == "LBP":
            model = LBP(arg)
        elif name == "RAD":
            model = RAD(arg)

        return model
示例#5
0
def identify(cf, img):
    # caricamento dei vari dataset
    gallery_target = np.load("npy_db/gallery_target.npy")
    histogram_gallery_data = np.load("npy_db/histogram_gallery_data.npy")
    users = pd.read_csv('dataset_user.csv', index_col=[0])
    gallery_thresholds = np.load("npy_db/gallery_thresholds.npy")
    galley_users = list(dict.fromkeys(gallery_target))
    cf_list = users['Codice Fiscale']

    # controlla se l'utente esiste
    if not cf_list.tolist().__contains__(cf):
        print("UTENTE NON PRESENTE! Il codice fiscale inserito è:", cf)
        return None, 0, None

    # informazioni del paziente utilizzando cf
    index = cf_list.tolist().index(cf)
    user = users.iloc[index]

    # lista dei delegati del paziente
    delegati = ast.literal_eval(user["Delegati"])

    # se il paziente non ha nessun delegato, allora termina l'operazione
    if len(delegati) == 0:
        print("L'utente non ha delegati!")
        return None, 0, None

    # si inizializzano le variabili per la similarity e l'identità del delegato
    max = 0
    identity = None

    # l'immagine in input viene normalizzata per poter utilizzare LBP e ottenerne l'istogramma relativo
    norm_image = cv2.normalize(img, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F)
    norm_image = norm_image.astype(np.uint8)
    lbp = LBP.Local_Binary_Pattern(1, 8, norm_image)
    hist = lbp.createHistogram(lbp.compute_lbp())

    # per ogni delegato
    for d in delegati:
        # ottengo il miglior valore ottenuto confrontando l'istograma con quelli del delegato nella galleria
        val = topMatch(d, gallery_target, histogram_gallery_data, hist)
        th_index = galley_users.index(d)
        # confrontiamo la similarity con quella massimo ottenuta finora e con il threshold del delegato
        # se la similarity supera quella massima e il threshold, allora aggiorniamo le variabili
        if val > max and val >= gallery_thresholds[th_index]:
            max = val  # il più alto valore di similarity attuale
            identity = d  # identità del delegato che ha ottenuto il miglior valore per il momento

    # se c'è stato un riconoscimento tra i delegati
    if identity is not None:
        indexd = cf_list.tolist().index(identity)
        recUser = users.iloc[indexd]
        # ritorna i dati del paziente, l'indice in cui si trova in dataset_user e le informazioni del delegato
        return user, index, recUser
    else:
        # altrimenti ritorna None come paziente, 0 come indice e None come delegato
        return None, 0, None
    def convert_image_to_hist(self, image):
        print(image)
        image = cv2.imread(image)

        norm_image = get_normalized(image)
        myLBP = LBP.Local_Binary_Pattern(1, 8, norm_image)
        new_img = myLBP.compute_lbp()

        hist = myLBP.createHistogram(new_img)
        return hist
示例#7
0
 def split_gallery_probe(self, data, target, cfs):
     num_user = self.num_user(target)
     # calcola il numero di template per utente
     unique, counts = np.unique(target, return_counts=True)
     occurrences = dict(zip(unique, counts))
     # numero di utenti che non sono nella gallery
     pn_user = round(num_user * pn / 100)
     # conteggio dei template
     countTemp = 0
     # conteggio
     countUser = 0
     # gallery_target, gallery_data, pn_data, pn_target, pg_data, pg_target = [], [], [], [], [], []
     gallery_target, gallery_data, pn_data, pn_target, pg_data, pg_target, histogram_gallery_data, \
     histogram_pg_data, histogram_pn_data = [], [], [], [], [], [], [], [], []
     # prendo il numero di template dell'utente. si parte dal presupposto che tutti gli utenti
     # hanno lo stesso numero di template
     occ = occurrences[target[0]]
     # numero di template per il probe set
     self.n_template_x_user = round(occ * probe / 100)
     # per ogni utente
     for i, val in enumerate(target):
         name = cfs[countUser]
         norm_template = self.get_normalized_template(i, data)
         lbp = LBP.Local_Binary_Pattern(1, 8, norm_template)
         # se il numero del template e' minore del numero massimo di template destinati alla gallery
         # e il numero di utenti rientra negli utenti che sono nella gallery, allora inserisco il template nella
         # gallery
         if (countTemp < occ - self.n_template_x_user
                 or occ == 1) and countUser < num_user - pn_user:
             gallery_data.append(norm_template)
             gallery_target.append(name)
             histogram_gallery_data.append(
                 lbp.createHistogram(lbp.compute_lbp()))
         else:
             # se lo inserisco nel probe set, controllo se l'utente e' nella gallery o no
             if countUser < num_user - pn_user:
                 pg_data.append(norm_template)
                 pg_target.append(name)
                 histogram_pg_data.append(
                     lbp.createHistogram(lbp.compute_lbp()))
             else:
                 pn_data.append(norm_template)
                 pn_target.append(name)
                 histogram_pn_data.append(
                     lbp.createHistogram(lbp.compute_lbp()))
         countTemp += 1
         # se ho finito i template dell'utente, passo all'utente successivo
         if countTemp == occ:
             countTemp = 0
             countUser += 1
     return gallery_data, gallery_target, pn_data, pn_target, pg_data, pg_target, histogram_gallery_data, histogram_pg_data, histogram_pn_data
示例#8
0
 def __init__(self, model_name, folder_path=None):
     self.model_name = model_name
     self.folder_path = folder_path
     self.split_windows = False
     self.model = None
     if self.model_name == 'LBP':
         self.model = LBP.LocalBinaryPatterns(8, 1)
         self.split_windows = True
     elif self.model_name == 'HOG':
         self.model = HOG.Hog(orientations=9, pixels_per_cell=(8, 8), cells_per_block=(2, 2))
     elif self.model_name == 'CM':
         self.model = ColorMoments.ColorMoments()
         self.split_windows = True
     elif self.model_name == 'SIFT':
         self.model = SIFT.SIFT()
示例#9
0
    def microTextureVideo(self, pathVid):
        cap = cv2.VideoCapture(pathVid)
        val = False

        # andiamo a prendere un frame e lo convertiamo in scala di grigi.
        while True:
            ret, frame = cap.read()
            try:
                vis = frame.copy()
            except Exception as e:
                print(str(e))
                break

            # convertiamo in scala di grigi.
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            # effettuiamo il ritaglio del viso
            crop = detect_face(gray, vis)

            # qui effettuiamo la conversione dell'immagine croppata in LBP
            if crop is not None:
                myLBP = LBP.Local_Binary_Pattern(1, 8, crop)
            else:
                continue
            new_img = myLBP.compute_lbp()
            # creiamo l'histogram dell'immagine calcolata in lpb
            hist = myLBP.createHistogram(new_img)

            # Andiamo a prendere il modello trained e salvato.
            with open('modelSVM.pkl', 'rb') as f:
                clf = pickle.load(f)

            hist = hist.reshape(1, -1)
            # attraverso il classificatore che abbiamo recuperato, ci facciamo dire se l'immagine è reale oppure no
            value = (clf.predict(hist))
            print(value)
            if value == 0:
                print("REAL")
                val = True
                break
            else:
                print("FAKE")
                val = False
                break

        cap.release()
        cv2.destroyAllWindows()
        return val
示例#10
0
def main():
    ap = argparse.ArgumentParser(
        description='Run the local binary patterns algorithm using a basic 3x3.'
    )
    ap.add_argument('-i',
                    '--input',
                    dest='input',
                    type=str,
                    required=True,
                    help='file name with path of the input image')
    arguments = ap.parse_args()

    input_file = arguments.input  #'data/simpsons/Test/bart116.jpg'

    if os.path.isfile(input_file):

        run = LBP.LBP(input_file)
        print("RUNNING algorithm developed")
        run.execute()
        #print("RUNNING scikit-image")
        #run.compare()
    else:
        print("File '{}' does not exist.".format(input_file))
示例#11
0
            'C:/Users/rebeb/Documents/TU_Wien/Dipl/FID-300/FID-300/FID-300/test_images/results/SIFT/output_SIFT_matched_00197_alternative.jpg',
            outputMatched)
        cv.imshow("keypoint mask", results)
        cv.imshow("matched", outputMatched)
        cv.waitKey(0)
        cv.destroyAllWindows()

    if LBPLearning:
        # patterns = LBP.threeLayeredLearning(images, masks)
        patterns = np.loadtxt(
            'C:/Users/rebeb/Documents/TU_Wien/Dipl/FID-300/FID-300/FID-300/test_images/training/discriminative_4_12_3.txt',
            delimiter=',')
        img = cv.imread(
            'C:/Users/rebeb/Documents/TU_Wien/Dipl/FID-300/FID-300/FID-300/test_images/hard/00197.jpg',
            0)
        lbpImage = LBP.getLBPImage(img, 4, 12, 3)
        height, width = img.shape
        res = np.zeros((height, width), np.float32)
        print("calculating")
        for x in range(width):
            for y in range(height):
                currentHisogram = lbpImage[y, x]
                currentHisogram = np.float32(currentHisogram)
                maxVal = 0
                for pattern in patterns:
                    val = cv.compareHist(currentHisogram,
                                         np.float32(np.asarray(pattern)),
                                         cv.HISTCMP_CORREL)
                    # if val > 0.75:
                    #     res[y, x] = 1
                    #     continue
示例#12
0
methods = ["HOG","LBP","HOGLBP"]
method = methods[0]

if method == "HOG":
    print("__________________________________________________________________")
    print("Computing HOG...")
    X_train = compute_hog_set(X)
    
elif method == "LBP":
    print("__________________________________________________________________")
    print("Computing LBP...")
    # Calculate LBP values for each image
    lbp_images = []
    for i in range(0, len(X)):
        lbp_images.append(lbp.lbp_compute(X[i]))
        
    # Calculate histograrms for each image
    uniform = False
    print("Computing Histograms...uniform:",str(uniform))
    
    histograms = []
    for i in range(0, len(lbp_images)):
        # IMPORTANT, set uniform to False or True for LBP/LBPU
        histograms.append(lbp.lbp_hist(lbp_images[i], step=8, win_size=16, 
                                       uniform = uniform))
    X = [elem for histogram in histograms for elem in histogram]


    for i in range(0,len(histograms)):
        histograms[i] = np.concatenate(histograms[i])
示例#13
0
test_images, test_classes = utils.load_data(TEST_IMAGES_FOLDER, IMG_EXTENSION)

print("Calculando descriptores")
train_descriptors = utils.compute_lbp(train_images, uniform=True)
test_descriptors = utils.compute_lbp(test_images, uniform=True)

descriptors = np.vstack((train_descriptors, test_descriptors))
labels = np.concatenate((train_classes, test_classes))

print("Entrenando el clasificador")
classifier = utils.train(descriptors.astype(np.float32),
                         labels,
                         kernel=cv2.ml.SVM_POLY,
                         params={'degree': 2})

detector = LBP.LBPDetector(8, 8, 16, 16, 128, 64, 8, 8, classifier)

print("Detectando en Abbey Road")

abbey_road = cv2.imread("abbey_road.jpeg")
peds = detector.detect(abbey_road, [0.8, 1, 1.2])

for ped in peds:
    cv2.rectangle(abbey_road, (ped[1], ped[0]), (ped[3], ped[2]), (0, 0, 255),
                  1)

cv2.imwrite("abbey_road_dets_multiscale.jpeg", abbey_road)

print("Detectando en Pedestrians")

pedestrians = cv2.imread("street.jpg")
         histograma = 0
       
         for (i,rect) in enumerate(rects):
            
            if imagini.endswith(".jpg"):
               
               cv2.imshow("imaginegrey",img_data)
               (x, y, w, h) = face_utils.rect_to_bb(rect)
               b = cv2.rectangle(img_data, (x, y), (x + w, y + h),10,0)
               c = b[y:y+h,x:x+w]
               
               try:
                  c = cv2.resize(c,(154,154))
                  c1 = copy.deepcopy(c)
                  
                  lbp = LBP.LBP(c,c1)
                  
                  cnt_imagini_total += 1
                  
                  histograma = calcul_histograma.calc_hist(lbp)
                  l_imag.append(folder)
                  l_hist_imag.append(histograma)
                  
                  f = open(subfolder+"_"+imagini[0:-4]+"_"+"hist.txt", "w+")
                  f.write(str(list(histograma)))
                  f.close()

                  lbp = 0
                  folder = ""

                                  
示例#15
0
 def classifier(name, arg):
     model = None
     if name == "asdfasdfnlasdflas":
         model = LBP(arg)
     return model
示例#16
0
# =======================
# now for the main script
# =======================

# first set basic display options

numpy.set_printoptions(precision=3)
#numpy.set_printoptions(linewidth=135)
matplotlib.pyplot.ion()

# then run some very basic tests.
# this is to catch silly bugs while developing the library being used.

print("testing basic MRF creation and message passing.")
mrf = LBP.MRF(7, 7, 3)
base_beliefs = numpy.ones(shape=(7, 7, 3))
mrf.init_base_belief(base_beliefs)
smoothness = numpy.ones(shape=(3, 3))
mrf.init_smoothness(smoothness)
mrf.pass_messages()
#print(mrf)

# as that must have worked, now test on the tsukuba pair.
# this will be much more involved,
# but is still a fairly basic application.
# most of the work here is in setting up the base belief array.

print("testing tsukaba pair stereo matching")

input_left = matplotlib.image.imread('tsukuba-imL.png')
示例#17
0
def compute_lbp(img_list, uniform=False):
    lbp = LBP.LBPDescriptor(8, 8, 16, 16, 128, 64, uniform)
    lbp_list = [lbp.compute(img) for img in img_list]

    return np.array(lbp_list)