def train(self, save_path, log, form, dep, lang, examples, dim, batch, epoch): # TODO train for a parameter M exam = [] for a, v1, v2 in examples: if a not in self.vocabulary or v1 not in self.vocabulary or v2 not in self.vocabulary: continue vec_a = self.embeddings[a] vec_v1 = self.embeddings[v1] vec_v2 = self.embeddings[v2] exam.append((tensor(vec_a), tensor(vec_v1), tensor(vec_v2))) self.para = M.train(save_path, log, form, dep, lang, exam, dim, batch, epoch) return self.para
#DaydayUp1 import MyDay as M ''' def dayUP(df): dayup=1 for i in range(365): if i % 7 in[6,0]: dayup=(1-0.01)*dayup else: dayup=(1+df)*dayup return dayup ''' dayfactory = 0.001 while M(dayfactory) < 37.78: dayfactory += 0.001 print('{:.3f}'.format(dayfactory))
#!/usr/bin/env python if __name__ == '__main__': import M import csv import numpy as np rows = list(csv.reader(open('../csv/train.csv'))) x, e = M.getColumns(rows, (0, 1, 3, 4), (int, float, lambda x: 1 if x=='male' else 0, float)) x = np.matrix(x) y = x[0,:] #class x = x[1:,:] #attributes pca = M.PCA(x) pca.plot(x, c = ['r' if i == 0 else 'b' for i in list(np.array(y)[0])])
def main(): m=M() t1=T1(m) t2=T2(m) t1.join() t2.join()
import M print (M.hello()) print (M.hello("Manu")) c = M.C1 (2) print (c.method ("foo")) print (c.id) print (c.name) c.prop = 5 # Calling setter print c.prop # Calling getter try: print c.wo_prop # Error except AttributeError: print "Expected exception when getting wo_prop"
import M print(M.hello()) print(M.hello("Manu")) print("%1.2f" % M.print_float(1.2)) c = M.C1 (2) print(c.method ("foo")) print(c.id) print(c.name) c.prop = 5 # Calling setter print(c.prop) # Calling getter try: print(c.wo_prop) # Error except AttributeError: print("Expected exception when getting wo_prop") l = M.MyList((1, 2)) print(l) print(l.dump())
def count_finite_det(design, one_purpose): return np.linalg.det(M(purpose=one_purpose, design=design, kernel=kernel, p=p, h=h))
#!/usr/bin/env python if __name__ == '__main__': import M import csv import numpy as np rows = list(csv.reader(open('../csv/train.csv'))) ''' x, e = M.getColumns(rows, (0, 3, (int, lambda x: 1 if x=='male' else 0))) print(M.count(x)) ''' x, e = M.getColumns(rows, (0, 1, 3, 4), (int, float, lambda x: 1 if x=='male' else 0, float)) x = np.matrix(x) y = x[0,:] #class x = x[1:,:] #attributes x0, x1 = M.split(x, y, lambda _y: _y==0) ''' success, failure = M.crossValidation(x0, x1, M.Fisher) print(success, failure) ''' d = M.Gauss(x0, x1) rows = list(csv.reader(open('../csv/test.csv')))[1:] for row in rows: try: x = [] x.append(float(row[0])) x.append(1 if row[2] == 'male' else 0) x.append(float(row[3])) print(d.do(np.matrix(x).T)) except ValueError:
def func(): ...do something else... # O.py from M import func from N import func # This overwites the one we got from M func() # Calls N.func only # O.py import M, N # Get the whole modules, not their names M.func() # We can call both names now N.func() # The module names make them unique ### file: module2.py print('starting to load...') import sys name = 42 def func(): pass class klass: pass print('done loading.')
def self_play(storage, player1, player2=None, explore=True, num_games=1, joseki=False): for n in range(num_games): if not parallell: print("Self-play game: %s" % n) #Handle the fact that ordinary self-play uses a single tree structure #whereas evaluation uses two different ones if player2 != None: evaluation = True else: evaluation = False #Initialize game structure game = santorini.Game() #Initialize players with networks and tree structures. Make the structures #globally available to facilitiate inspection or debugging p1 = M.MCTS(game, player1, sess, explore) global P1 P1 = p1 if player2 != None: evaluation = True p2 = M.MCTS(game, player2, sess, explore) global P2 P2 = p2 players = [p1, p2] else: evaluation = False #Store state history, but don't add it to global history yet as we need #to know the outcome first temp_history = [] done = False while done == False: if evaluation: player = game.turn_count%2 tree = players[player] other_tree = players[(player+1)%2] else: tree = p1 #Execute tree search and make move t0 = time.time() done = tree.consider_resigning(v_resign, observe_games) a, pi_s, P, v = tree.run_simulation(search_depth) temp_history.extend([[game.stack_s(), pi_s, game.legal_moves(binaryV=True)]]) if evaluation: #This is not very neat, and I should fix it up at some point... other_tree.prepare_adversarial_move(a) game.move(a) done = game.done if evaluation: other_tree.finish_adversarial_move(a) tree.prepare_next_move() if observe_games: for i in range(10): print("\n") print("P (predicted tree search probs):\n%s\n\n" % np.reshape(P, [5,5]), "pi (actual tree search probs):\n%s\n\n" % np.reshape(pi_s, [5,5]), "v: %s\n" % v, "Chosen move: %s\n" % a, "Overall game state:\n%s\n\n" % game.render()) print("time: ", time.time()-t0) z = game.outcome #store data t = len(temp_history) for entry in temp_history: storage.add(entry[0], entry[1], discount_rs(z, t), entry[2]) t -= 1 return z
# import가 필요한 경우 # M.py def func(): ...무엇인가를 수행함... # N.py def func(): ...다른 무엇인가를 수행함... # O.py from M import func from N import func # M으로부터 가져온 func를 덮어씀 func() # N.func만 호출함 # O.py import M, N # 모듈의 이름들이 아니라, 전체 모듈을 가져옴 M.func() # 이제 두 이름 모두 호출할 수 있음 N.func() # 모듈 이름이 두 이름을 유일하게 만들어줌 # O.py from M import func as mfunc # "as"를 이용하여 이름을 유일하게 재명명 from N import func as nfunc mfunc(), nfunc(); # 하나 또는 나머지의 하나를 호출함
def calc_gpu_fraction(fraction_string): idx, num = fraction_string.split('/') idx, num = float(idx), float(num) fraction = 1 / (num - idx + 1) print "[*] GPU : %.4f" % fraction return fraction config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = calc_gpu_fraction('1/3') config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: # Instantiate simulators for synthetic gradient and synthetic input gradient_simulator = M(output_dimension, num_parameters, n_layer, sess) input_simulator = I(IMAGE_PIXELS * IMAGE_PIXELS, input_dimension, n_layer, sess) iteration = 0 while iteration < 20000: iteration += 1 batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batch_size) if n_layer != 1: syn_input_val = input_simulator.get_syn_input(batch_xs, iteration) else: syn_input_val = batch_xs.astype(np.float32) syn_input_val = append_ones(syn_input_val)