def IntradayFryWin(symbolinfo, rawdata, paraSet): setname = paraSet['Setname'] MACD_S = paraSet['MACD_S'] MACD_L = paraSet['MACD_L'] MACD_M = paraSet['MACD_M'] MA_N = paraSet['MA_N'] # print setname rawdata['Unnamed: 0'] = range(rawdata.shape[0]) #beginindex = rawdata.ix[0, 'Unnamed: 0'] # 计算MACD macd = MA.calMACD(rawdata['close'], MACD_S, MACD_L, MACD_M) rawdata['DIF'] = macd[0] rawdata['DEA'] = macd[1] rawdata['MA'] = MA.calEMA(rawdata['close'], MA_N) # 计算MACD的金叉和死叉 rawdata['MACD_True'], rawdata['MACD_Cross'] = MA.dfCross(rawdata, 'DIF', 'DEA') # ================================ 找出买卖点================================================ # 1.先找出SAR金叉的买卖点 # 2.找到结合判决条件的买点 # 3.从MA买点中滤出真实买卖点 # 取出金叉点 goldcrosslist = pd.DataFrame({'goldcrosstime': rawdata.loc[rawdata['MACD_Cross'] == 1, 'strtime']}) goldcrosslist['goldcrossutc'] = rawdata.loc[rawdata['MACD_Cross'] == 1, 'utc_time'] goldcrosslist['goldcrossindex'] = rawdata.loc[rawdata['MACD_Cross'] == 1, 'Unnamed: 0'] goldcrosslist['goldcrossprice'] = rawdata.loc[rawdata['MACD_Cross'] == 1, 'close'] # 取出死叉点 deathcrosslist = pd.DataFrame({'deathcrosstime': rawdata.loc[rawdata['MACD_Cross'] == -1, 'strtime']}) deathcrosslist['deathcrossutc'] = rawdata.loc[rawdata['MACD_Cross'] == -1, 'utc_time'] deathcrosslist['deathcrossindex'] = rawdata.loc[rawdata['MACD_Cross'] == -1, 'Unnamed: 0'] deathcrosslist['deathcrossprice'] = rawdata.loc[rawdata['MACD_Cross'] == -1, 'close'] goldcrosslist = goldcrosslist.reset_index(drop=True) deathcrosslist = deathcrosslist.reset_index(drop=True) # 生成多仓序列(金叉在前,死叉在后) if goldcrosslist.ix[0, 'goldcrossindex'] < deathcrosslist.ix[0, 'deathcrossindex']: longcrosslist = pd.concat([goldcrosslist, deathcrosslist], axis=1) else: # 如果第一个死叉的序号在金叉前,则要将死叉往上移1格 longcrosslist = pd.concat([goldcrosslist, deathcrosslist.shift(-1).fillna(0)], axis=1) longcrosslist = longcrosslist.set_index(pd.Index(longcrosslist['goldcrossindex']), drop=True) # 生成空仓序列(死叉在前,金叉在后) if deathcrosslist.ix[0, 'deathcrossindex'] < goldcrosslist.ix[0, 'goldcrossindex']: shortcrosslist = pd.concat([deathcrosslist, goldcrosslist], axis=1) else: # 如果第一个金叉的序号在死叉前,则要将金叉往上移1格 shortcrosslist = pd.concat([deathcrosslist, goldcrosslist.shift(-1).fillna(0)], axis=1) shortcrosslist = shortcrosslist.set_index(pd.Index(shortcrosslist['deathcrossindex']), drop=True) # 取出开多序号和开空序号 openlongindex = rawdata.loc[ (rawdata['MACD_Cross'] == 1) & (rawdata['close'] > rawdata['MA']) & (rawdata['ATR'] > 6)].index openshortindex = rawdata.loc[ (rawdata['MACD_Cross'] == -1) & (rawdata['close'] < rawdata['MA']) & (rawdata['ATR'] > 6)].index # 从多仓序列中取出开多序号的内容,即为开多操作 longopr = longcrosslist.loc[openlongindex] longopr['tradetype'] = 1 longopr.rename(columns={'goldcrosstime': 'opentime', 'goldcrossutc': 'openutc', 'goldcrossindex': 'openindex', 'goldcrossprice': 'openprice', 'deathcrosstime': 'closetime', 'deathcrossutc': 'closeutc', 'deathcrossindex': 'closeindex', 'deathcrossprice': 'closeprice'}, inplace=True) # 从空仓序列中取出开空序号的内容,即为开空操作 shortopr = shortcrosslist.loc[openshortindex] shortopr['tradetype'] = -1 shortopr.rename(columns={'deathcrosstime': 'opentime', 'deathcrossutc': 'openutc', 'deathcrossindex': 'openindex', 'deathcrossprice': 'openprice', 'goldcrosstime': 'closetime', 'goldcrossutc': 'closeutc', 'goldcrossindex': 'closeindex', 'goldcrossprice': 'closeprice'}, inplace=True) # 结果分析 result = pd.concat([longopr, shortopr]) result = result.sort_index() result = result.reset_index(drop=True) # result.drop(result.shape[0] - 1, inplace=True) result = result.dropna() # 去掉跨合约的操作 # 使用单合约,不用再去掉跨合约 # result = removeContractSwap(result, contractswaplist) slip = symbolinfo.getSlip() result['ret'] = ((result['closeprice'] - result['openprice']) * result['tradetype']) - slip result['ret_r'] = result['ret'] / result['openprice'] results = {} ''' # 使用单合约,策略核心内不再计算结果 if calcResult: result['commission_fee'], result['per earn'], result['own cash'], result['hands'] = RS.calcResult(result, symbolinfo, initialCash, positionRatio) endcash = result['own cash'].iloc[-1] Annual = RS.annual_return(result) Sharpe = RS.sharpe_ratio(result) DrawBack = RS.max_drawback(result)[0] SR = RS.success_rate(result) max_single_loss_rate = abs(result['ret_r'].min()) results = { 'Setname':setname, 'opentimes': result.shape[0], 'end_cash': endcash, 'SR': SR, 'Annual': Annual, 'Sharpe': Sharpe, 'DrawBack': DrawBack, 'max_single_loss_rate': max_single_loss_rate } closeopr = result.loc[:, 'closetime':'tradetype'] return result, rawdata, closeopr, results ''' return result
def HopeMACDWin(symbolInfo,setname,K_MIN_MACD,startdate,enddate,macdParaSet,contractswaplist,calcResult=True): print setname rawdata_macd = DC.getBarData(symbolInfo.symbol, K_MIN_MACD, startdate + " 00:00:00", enddate + " 23:59:59") MACD_S=macdParaSet['MACD_S'] MACD_L = macdParaSet['MACD_L'] MACD_M = macdParaSet['MACD_M'] macd = MA.calMACD(rawdata_macd['close'], MACD_S, MACD_L, MACD_M) rawdata_macd['DIF'] = macd[0] rawdata_macd['DEA'] = macd[1] rawdata_macd['DIF_F']=-1 rawdata_macd['DEA_F']=-1 rawdata_macd.loc[rawdata_macd['DIF']>=0,'DIF_F'] = 1 rawdata_macd.loc[(rawdata_macd['DIF']>=rawdata_macd['DEA']) , 'DEA_F'] = 1 rawdata_macd['OpenF']=rawdata_macd['DIF_F']+rawdata_macd['DEA_F'] rawdata_macd['OpenF1']=rawdata_macd['OpenF'].shift(1).fillna(0) # ================================ 找出买卖点================================================ # 1.OpenF==2 & (OpenF1 ==-2/0):开多 # 2.OpenF==-2/0& (OpenfF1==2):平多 # 3.OpenF==-2 & (OpenF1 == 2/0):开空 # 4.OpenF==2/0 & OpenF1==-2 :平空 #开多 openlonglist = pd.DataFrame({'opentime': rawdata_macd.loc[(rawdata_macd['OpenF'] == 2) & (rawdata_macd['OpenF1'] < 2 ), 'strtime']}) openlonglist['openutc'] = rawdata_macd.loc[(rawdata_macd['OpenF'] == 2) & (rawdata_macd['OpenF1'] < 2 ), 'utc_time'] openlonglist['openindex'] = rawdata_macd.loc[(rawdata_macd['OpenF'] == 2) & (rawdata_macd['OpenF1'] < 2 ), 'Unnamed: 0'] openlonglist['openprice'] = rawdata_macd.loc[(rawdata_macd['OpenF'] == 2) & (rawdata_macd['OpenF1'] < 2 ), 'close'] # 平多 closelonglist = pd.DataFrame( {'closetime': rawdata_macd.loc[(rawdata_macd['OpenF1'] == 2) & (rawdata_macd['OpenF'] < 2), 'strtime']}) closelonglist['closeutc'] = rawdata_macd.loc[ (rawdata_macd['OpenF1'] == 2) & (rawdata_macd['OpenF'] < 2), 'utc_time'] closelonglist['closeindex'] = rawdata_macd.loc[ (rawdata_macd['OpenF1'] == 2) & (rawdata_macd['OpenF'] < 2), 'Unnamed: 0'] closelonglist['closeprice'] = rawdata_macd.loc[ (rawdata_macd['OpenF1'] == 2) & (rawdata_macd['OpenF'] < 2), 'close'] #开空 openshortlist = pd.DataFrame({'opentime': rawdata_macd.loc[(rawdata_macd['OpenF'] == -2) & (rawdata_macd['OpenF1'] > -2 ), 'strtime']}) openshortlist['openutc'] = rawdata_macd.loc[(rawdata_macd['OpenF'] == -2) & (rawdata_macd['OpenF1'] > -2 ), 'utc_time'] openshortlist['openindex'] = rawdata_macd.loc[(rawdata_macd['OpenF'] == -2) & (rawdata_macd['OpenF1'] > -2 ), 'Unnamed: 0'] openshortlist['openprice'] = rawdata_macd.loc[(rawdata_macd['OpenF'] == -2) & (rawdata_macd['OpenF1'] > -2 ), 'close'] # 平空 closeshortlist = pd.DataFrame( {'closetime': rawdata_macd.loc[(rawdata_macd['OpenF1'] == -2) & (rawdata_macd['OpenF'] > -2), 'strtime']}) closeshortlist['closeutc'] = rawdata_macd.loc[ (rawdata_macd['OpenF1'] == -2) & (rawdata_macd['OpenF'] > -2), 'utc_time'] closeshortlist['closeindex'] = rawdata_macd.loc[ (rawdata_macd['OpenF1'] == -2) & (rawdata_macd['OpenF'] > -2), 'Unnamed: 0'] closeshortlist['closeprice'] = rawdata_macd.loc[ (rawdata_macd['OpenF1'] == -2) & (rawdata_macd['OpenF'] > -2), 'close'] openlonglist.reset_index(drop=True,inplace=True) closelonglist.reset_index(drop=True,inplace=True) openshortlist.reset_index(drop=True,inplace=True) closeshortlist.reset_index(drop=True,inplace=True) # 生成多仓序列(金叉在前,死叉在后) if openlonglist.ix[0, 'openindex'] < closelonglist.ix[0, 'closeindex']: longlist = pd.concat([openlonglist, closelonglist], axis=1) else: # 如果第一个死叉的序号在金叉前,则要将死叉往上移1格 longlist = pd.concat([openlonglist, closelonglist.shift(-1).fillna(0)], axis=1) #longlist.set_index('openindex', inplace=True) longlist['tradetype']=1 # 生成空仓序列(死叉在前,金叉在后) if openshortlist.ix[0, 'openindex'] < closeshortlist.ix[0, 'closeindex']: shortlist = pd.concat([openshortlist, closeshortlist], axis=1) else: # 如果第一个金叉的序号在死叉前,则要将金叉往上移1格 shortlist = pd.concat([openshortlist, closeshortlist.shift(-1).fillna(0)], axis=1) #shortlist.set_index('openindex', drop=True) shortlist['tradetype']=-1 # 结果分析 result = pd.concat([longlist, shortlist]) result = result.set_index(pd.Index(result['openindex']), drop=True) result = result.sort_index() result = result.reset_index(drop=True) result.drop(result.shape[0] - 1, inplace=True) # 去掉跨合约的操作 result = removeContractSwap(result, contractswaplist) initial_cash = 20000 margin_rate = 0.2 slip = symbolInfo.getSlip() multiplier = symbolInfo.getMultiplier() poundgeType, poundgeFee, poundgeRate = symbolInfo.getPoundage() result['ret'] = ((result['closeprice'] - result['openprice']) * result['tradetype']) - slip result['ret_r'] = result['ret'] / result['openprice'] results={} if calcResult: firsttradecash = initial_cash / margin_rate result['commission_fee'] = 0 if poundgeType == symbolInfo.POUNDGE_TYPE_RATE: result.ix[0, 'commission_fee'] = firsttradecash * poundgeRate * 2 else: result.ix[0, 'commission_fee'] = firsttradecash / (multiplier * result.ix[0, 'openprice']) * poundgeFee * 2 result['per earn'] = 0 # 单笔盈亏 result['own cash'] = 0 # 自有资金线 result['trade money'] = 0 # 杠杆后的可交易资金线 result.ix[0, 'per earn'] = firsttradecash * result.ix[0, 'ret_r'] result.ix[0, 'own cash'] = initial_cash + result.ix[0, 'per earn'] - result.ix[0, 'commission_fee'] result.ix[0, 'trade money'] = result.ix[0, 'own cash'] / margin_rate oprtimes = result.shape[0] for i in np.arange(1, oprtimes): # 根据手续费类型计算手续费 if poundgeType == symbolInfo.POUNDGE_TYPE_RATE: commission = result.ix[i - 1, 'trade money'] * poundgeRate * 2 else: commission = result.ix[i - 1, 'trade money'] / (multiplier * result.ix[i, 'openprice']) * poundgeFee * 2 perearn = result.ix[i - 1, 'trade money'] * result.ix[i, 'ret_r'] owncash = result.ix[i - 1, 'own cash'] + perearn - commission result.ix[i, 'own cash'] = owncash result.ix[i, 'commission_fee'] = commission result.ix[i, 'per earn'] = perearn result.ix[i, 'trade money'] = owncash / margin_rate endcash = result.ix[oprtimes - 1, 'own cash'] Annual = RS.annual_return(result) Sharpe = RS.sharpe_ratio(result) DrawBack = RS.max_drawback(result)[0] SR = RS.success_rate(result) max_single_loss_rate = abs(result['ret_r'].min()) results = { 'Setname':setname, 'MACD_S':MACD_S, 'MACD_L':MACD_L, 'MACD_M':MACD_M, 'opentimes': oprtimes, 'end_cash': endcash, 'SR': SR, 'Annual':Annual, 'Sharpe':Sharpe, 'DrawBack':DrawBack, 'max_single_loss_rate': max_single_loss_rate } print results filename = ("%s%d %s result.csv" % (symbolInfo.symbol, K_MIN_MACD,setname)) result.to_csv(filename) rawdata_macd.to_csv('macd '+filename) del rawdata_macd return results