示例#1
0
def main():

    char2idx = {}
    idx2char = []
    vocabSize = 0
    NN.EMBEDDINGDIM = 0
    NN.NNUNITS = 0
    firstSequenceToUse = ""
    NN.NHIDDENLAYERS = 0
    NN.HIDDENLAYERS = []
    NN.TEMPERATURE = 0

    NN.ReadArgsForGenerating()

    with open('./NNTraining/' + NN.TRAINFILE, 'rb') as f:
        char2idx = pickle.load(f)
        idx2char = pickle.load(f)
        vocabSize = pickle.load(f)
        NN.EMBEDDINGDIM = pickle.load(f)
        NN.NNUNITS = pickle.load(f)
        firstSequenceToUse = pickle.load(f)
        NN.NHIDDENLAYERS = pickle.load(f)
        NN.HIDDENLAYERS = pickle.load(f)
        NN.TEMPERATURE = pickle.load(f)

    model = NN.BuildModel(vocabSize, NN.EMBEDDINGDIM, NN.NNUNITS, batchSize=1)

    # model.load_weights(tf.train.latest_checkpoint(checkpointDir))
    model.load_weights('./NNTraining/cp.ckpt')

    model.build(tf.TensorShape([1, None]))

    model.summary()

    genText = NN.GenerateText(model, firstSequenceToUse, NN.WIDTH, char2idx,
                              idx2char)

    NN.SaveFile(NN.OUTPUT, genText)
示例#2
0
def main():

    NN.ReadArgsForTrainning()

    print(NN.SEQLENGTH)

    if NN.DEPURATION:
        print("FILES: " + str(NN.NFILES))
        for f in NN.FILE:
            print("   FILE: " + str(f))
        print()
        print("SEQUENCE LENGHT: " + str(NN.SEQLENGTH))
        print()
        print("BUFFER SIZE: " + str(NN.BUFFERSIZE))
        print()
        print("EMBEDDING DIM: " + str(NN.EMBEDDINGDIM))
        print()
        print("NN UNITS: " + str(NN.NNUNITS))
        print()
        print("EPOCHS: " + str(NN.EPOCHS))
        print()
        print("LAYERS: " + str(NN.NHIDDENLAYERS))
        for l in NN.HIDDENLAYERS:
            print("   LAYER: " + str(l))
        print()
        print("TEMPERATURE: " + str(NN.TEMPERATURE))
        print()

    print("Generating neural network:")
    print()
    #Auxiliar variables to store the first sequence to generate text
    listDatasets = []
    vocab = []
    textstr = []

    for f in NN.FILE:
        text = NN.ReadFile(f)
        v, tstr = NN.GetVocabulary(text)
        vocab += (v)
        textstr.append(tstr)

    vocab = set(vocab)

    char2idx, idx2char = NN.VectorizeText(vocab)
    #print(idx2char.size)

    textint = []
    for t in textstr:
        textint.append(NN.np.array([char2idx[s] for s in t]))

    firstSeq = False
    firstSequenceToUse = ""
    datasets = []
    examplesPerEpoch = 0
    for t in textint:
        print(t)
        print()
        firstSequence, charDataset = NN.CreateTrainingSamples(t, idx2char)
        if not firstSeq:
            firstSequenceToUse = firstSequence
            firstSeq = True

        sequencesCreated = NN.CreateSequences(NN.SEQLENGTH, charDataset)

        dataset = sequencesCreated.map(NN.SplitInputTarget)

        dataset = dataset.shuffle(NN.BUFFERSIZE,
                                  False).batch(NN.GetExamplesPerEpoch(
                                      t, NN.SEQLENGTH),
                                               drop_remainder=True)
        examplesPerEpoch = NN.GetExamplesPerEpoch(t, NN.SEQLENGTH)
        datasets.append(dataset)

    # Length of the vocabulary in chars
    vocabSize = len(vocab)
    model = NN.BuildModel(vocabSize=vocabSize,
                          embeddingDim=NN.EMBEDDINGDIM,
                          nnUnits=NN.NNUNITS,
                          batchSize=examplesPerEpoch)
    model.summary()
    model.compile(optimizer='adam', loss=NN.Loss)

    # Directory where the checkpoints will be saved
    checkpointDir = './NNTraining/cp.ckpt'
    # Name of the checkpoint files
    # checkpointPrefix = os.path.join(checkpointDir, "ckpt_{epoch}")

    checkpointCallback = NN.tf.keras.callbacks.ModelCheckpoint(
        filepath=checkpointDir, save_weights_only=True)

    for d in datasets:
        model.fit(d, epochs=NN.EPOCHS, callbacks=[checkpointCallback])

    try:
        os.mkdir('./NNTraining/')
    except FileExistsError:
        pass

    trainFileName = time.strftime("%Y%m%d_%H%M%S")

    with open('./NNTraining/' + trainFileName + '_Training_NN.pkl', "wb") as f:
        pickle.dump(char2idx, f, pickle.HIGHEST_PROTOCOL)
        pickle.dump(idx2char, f, pickle.HIGHEST_PROTOCOL)
        pickle.dump(vocabSize, f, pickle.HIGHEST_PROTOCOL)
        pickle.dump(NN.EMBEDDINGDIM, f, pickle.HIGHEST_PROTOCOL)
        pickle.dump(NN.NNUNITS, f, pickle.HIGHEST_PROTOCOL)
        pickle.dump(firstSequenceToUse, f, pickle.HIGHEST_PROTOCOL)
        pickle.dump(NN.NHIDDENLAYERS, f, pickle.HIGHEST_PROTOCOL)
        pickle.dump(NN.HIDDENLAYERS, f, pickle.HIGHEST_PROTOCOL)
        pickle.dump(NN.TEMPERATURE, f, pickle.HIGHEST_PROTOCOL)