def __init__(self, env, args):
        self.args = args
        self.agent = Neurosmash.Agent()
        self.env = env

        # extract background
        self.extr = BE.Background_Extractor(self.env, self.agent, args)
        self.background = self.extr.get_background(oned=True)
        self.background_im = self.extr.get_background(oned=False)
示例#2
0
    def __init__(self, vision, env, args, agent=None):
        self.args = args
        self.vision = vision
        self.env = env
        if not agent:
            self.agent = Neurosmash.Agent()
        else:
            self.agent = agent

        # extract background
        self.extr = BE.Background_Extractor(self.env, self.agent, args)
        self.background = self.extr.get_background(oned=True)
示例#3
0
def set_up_env(args):
    # Initialize agent and environment

    controller = Neurosmash.Agent()  # This is an example agent.
    if args.use_controller:
        controller = Controller(args)

    # This is the main environment.
    try:
        environment = Neurosmash.Environment(args)
    except:
        print(
            "Connecting to environment failed. Please make sure Neurosmash is running and check your settings."
        )
        print(
            f"Settings from world model: ip={args.ip}, port={args.port}, size={args.size}, timescale={args.timescale}"
        )
    else:
        print("Successfully connected to Neurosmash!")
        return controller, environment
示例#4
0
# Imports
from convvae import ConvVae
import numpy as np
import mxnet as mx
from mxnet import nd, autograd, gluon
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import matplotlib.pyplot as plt
import Neurosmash

ip = "127.0.0.1"
port = 13000
size = 128  # 96, 192
timescale = 1
agent = Neurosmash.Agent()
environment = Neurosmash.Environment(ip, port, size, timescale)

# end (true if the episode has ended, false otherwise)
# reward (10 if won, 0 otherwise)
# state (flattened size x size x 3 vector of pixel values)
# The state can be converted into an image as follows:
# image = np.array(state, "uint8").reshape(size, size, 3)
# You can also use to Neurosmash.Environment.state2image(state) function which returns
# the state as a PIL image

shape = (3, size, size)


def roam_and_collect(nr_images=10):

    # The following steps through an entire episode from start to finish with random actions (by default)
 def __init__(self, env, args):
     self.args = args
     self.agent = Neurosmash.Agent()
     self.env = env
     extr = BE.Background_Extractor(self.env, self.agent, args)
     self.background = extr.get_background().reshape(-1)