def CuSumPlots(): #============================================================================= cusum_data = PD._cusum(data) def change(dates,headings,cusum_data,DateLine,row,col,plot_num,y_col): plt.subplot(row,col,plot_num) plt.plot(dates,cusum_data[:,y_col]) date = np.int(np.floor(len(dates) * DateLine)) plt.axvline(dates[date], color='red') plt.grid(True) plt.title(headings[y_col]) plt.xticks(rotation = 90) fig = plt.gcf() fig.subplots_adjust(top=0.95) fig.subplots_adjust(bottom=0.12) fig.subplots_adjust(left=0.08) fig.subplots_adjust(right=0.97) ax = plt.gca() ax.xaxis.label.set_color([0.75,0.75,0.75]) ax.tick_params(axis='x', colors=[0.75,0.75,0.75]) plt.figure('CuSum plots') plt.clf() row = 7 col = 1 DateLine = 0.85 y_col = 3 plot_num = 1 change(dates,headings,cusum_data,DateLine,row,col,plot_num,y_col) y_col = 4 plot_num = plot_num + 1 change(dates,headings,cusum_data,DateLine,row,col,plot_num,y_col) y_col = 5 plot_num = plot_num + 1 change(dates,headings,cusum_data,DateLine,row,col,plot_num,y_col) y_col = 8 plot_num = plot_num + 1 change(dates,headings,cusum_data,DateLine,row,col,plot_num,y_col) y_col = 12 plot_num = plot_num + 1 change(dates,headings,cusum_data,DateLine,row,col,plot_num,y_col) y_col = 10 plot_num = plot_num + 1 change(dates,headings,cusum_data,DateLine,row,col,plot_num,y_col) y_col = 11 plot_num = plot_num + 1 change(dates,headings,cusum_data,DateLine,row,col,plot_num,y_col) ax = plt.gca() ax.xaxis.label.set_color([0,0,0]) ax.tick_params(axis='x', colors=[0,0,0]) plt.show()
for i in range(len(data)): if (data[i,2] > 0 and data[i,2] > 0): data1[m,] = data[i,] ave_data1[m,] = ave_data[i,] m = m + 1 data = np.zeros((m,a[1])) ave_data = np.zeros((m,a[1])) dates = range(m) for i in range(m): data[i,] = data1[i,] ave_data[i,] = ave_data1[i,] dates[i] = datetime.datetime(*xlrd.xldate_as_tuple(data[i,0],0)) cusum_data = PD._cusum(data) """ ============================================================================== =================================== PCA ====================================== """ def PCA(): #============================================================================= #select which elements of the "data" matirx you wish to analyse data_set = [2,3,8,12,30,17,34,35] #define the variable column for which predictors need to be identified