示例#1
0
def get_form():
    """
    @return: the body of a form
    """
    # define the default nexus string
    tree = get_sample_tree()
    mixture_model = get_sample_mixture_model()
    ncols = 200
    seed = 314159
    alignment = PhyLikelihood.simulate_alignment(tree, mixture_model, ncols,
                                                 seed)
    nexus = Nexus.Nexus()
    nexus.tree = tree
    nexus.alignment = alignment
    nexus_string = str(nexus)
    # define the form objects
    form_objects = [
        Form.MultiLine('nexus', 'nexus data', nexus_string),
        Form.Integer('ncategories',
                     'use this many categories',
                     3,
                     low=1,
                     high=5),
        Form.CheckGroup('options', 'output options', [
            Form.CheckItem('outdebug', 'show debug info'),
            Form.CheckItem('outmodel', 'show the model'),
            Form.CheckItem('outcheck', 'show the likelihood and rates', True)
        ])
    ]
    return form_objects
示例#2
0
def get_form():
    """
    @return: the body of a form
    """
    # define the default nexus string
    tree = get_sample_tree()
    mixture_model = get_sample_mixture_model()
    ncols = 200
    seed = 314159
    alignment = PhyLikelihood.simulate_alignment(
            tree, mixture_model, ncols, seed)
    nexus = Nexus.Nexus()
    nexus.tree = tree
    nexus.alignment = alignment
    nexus_string = str(nexus)
    # define the form objects
    form_objects = [
            Form.MultiLine('nexus', 'nexus data', nexus_string),
            Form.Integer('ncategories', 'use this many categories',
                3, low=1, high=5),
            Form.CheckGroup('options', 'output options', [
                Form.CheckItem('outdebug', 'show debug info'),
                Form.CheckItem('outmodel', 'show the model'),
                Form.CheckItem('outcheck', 'show the likelihood and rates',
                    True)])]
    return form_objects
示例#3
0
 def gen_distance_matrices(self, count, max_steps):
     """
     Yield (ordered sequence list, distance matrix) pairs .
     The generator will stop if it sees that it cannot meet its goal
     in the allotted number of steps.
     @param count: the requested number of distance matrices
     @param max_steps: an upper bound on the allowed number of steps
     """
     # define the jukes cantor rate matrix
     dictionary_rate_matrix = RateMatrix.get_jukes_cantor_rate_matrix()
     ordered_states = list('ACGT')
     row_major_rate_matrix = MatrixUtil.dict_to_row_major(
         dictionary_rate_matrix, ordered_states, ordered_states)
     model = RateMatrix.RateMatrix(row_major_rate_matrix, ordered_states)
     # record the requested number of samples
     self.requested_matrix_count = count
     # do some rejection sampling
     while True:
         if self.get_complexity() >= max_steps:
             break
         if self.accepted_sample_count >= count:
             break
         # simulate an alignment from the tree
         alignment = PhyLikelihood.simulate_alignment(
             self.tree, model, self.sequence_length)
         # extract the ordered list of sequences from the alignment object
         name_to_sequence = dict(zip(alignment.headers,
                                     alignment.sequences))
         sequence_list = [
             name_to_sequence[name] for name in self.ordered_names
         ]
         # get the estimated distance matrix
         distance_matrix = JC69.get_ML_distance_matrix(sequence_list)
         # look for degeneracies
         has_zero_off_diagonal = False
         has_inf_off_diagonal = False
         for i, row in enumerate(distance_matrix):
             for j, value in enumerate(row):
                 if i != j:
                     if value == 0.0:
                         has_zero_off_diagonal = True
                     if value == float('inf'):
                         has_inf_off_diagonal = True
         if has_zero_off_diagonal:
             self.rejected_zero_sample_count += 1
         elif has_inf_off_diagonal:
             self.rejected_inf_sample_count += 1
         else:
             self.accepted_sample_count += 1
             yield sequence_list, distance_matrix
示例#4
0
 def gen_distance_matrices(self, count, max_steps):
     """
     Yield (ordered sequence list, distance matrix) pairs .
     The generator will stop if it sees that it cannot meet its goal
     in the allotted number of steps.
     @param count: the requested number of distance matrices
     @param max_steps: an upper bound on the allowed number of steps
     """
     # define the jukes cantor rate matrix
     dictionary_rate_matrix = RateMatrix.get_jukes_cantor_rate_matrix()
     ordered_states = list('ACGT')
     row_major_rate_matrix = MatrixUtil.dict_to_row_major(
             dictionary_rate_matrix, ordered_states, ordered_states)
     model = RateMatrix.RateMatrix(row_major_rate_matrix, ordered_states)
     # record the requested number of samples
     self.requested_matrix_count = count
     # do some rejection sampling
     while True:
         if self.get_complexity() >= max_steps:
             break
         if self.accepted_sample_count >= count:
             break
         # simulate an alignment from the tree
         alignment = PhyLikelihood.simulate_alignment(
                 self.tree, model, self.sequence_length)
         # extract the ordered list of sequences from the alignment object
         name_to_sequence = dict(zip(alignment.headers, alignment.sequences))
         sequence_list = [name_to_sequence[name]
                 for name in self.ordered_names]
         # get the estimated distance matrix
         distance_matrix = JC69.get_ML_distance_matrix(sequence_list)
         # look for degeneracies
         has_zero_off_diagonal = False
         has_inf_off_diagonal = False
         for i, row in enumerate(distance_matrix):
             for j, value in enumerate(row):
                 if i != j:
                     if value == 0.0:
                         has_zero_off_diagonal = True
                     if value == float('inf'):
                         has_inf_off_diagonal = True
         if has_zero_off_diagonal:
             self.rejected_zero_sample_count += 1
         elif has_inf_off_diagonal:
             self.rejected_inf_sample_count += 1
         else:
             self.accepted_sample_count += 1
             yield sequence_list, distance_matrix
示例#5
0
def get_response_content(fs):
    # get the tree
    tree = Newick.parse(fs.tree, Newick.NewickTree)
    tree.assert_valid()
    # get the normalized Direct RNA mixture model
    mixture_model = DirectRna.deserialize_mixture_model(fs.model)
    mixture_model.normalize()
    # simulate the alignment
    try:
        alignment = PhyLikelihood.simulate_alignment(tree, mixture_model,
                                                     fs.ncols)
    except PhyLikelihood.SimulationError as e:
        raise HandlingError(e)
    # get the alignment
    arr = []
    for node in tree.gen_tips():
        arr.append(alignment.get_fasta_sequence(node.name))
    # return the alignment string
    return '\n'.join(arr) + '\n'
示例#6
0
def get_response_content(fs):
    # get the tree
    tree = Newick.parse(fs.tree, Newick.NewickTree)
    tree.assert_valid()
    # get the normalized Direct RNA mixture model
    mixture_model = DirectRna.deserialize_mixture_model(fs.model)
    mixture_model.normalize()
    # simulate the alignment
    try:
        alignment = PhyLikelihood.simulate_alignment(tree,
                mixture_model, fs.ncols)
    except PhyLikelihood.SimulationError as e:
        raise HandlingError(e)
    # get the alignment
    arr = []
    for node in tree.gen_tips():
        arr.append(alignment.get_fasta_sequence(node.name))
    # return the alignment string
    return '\n'.join(arr) + '\n'
示例#7
0
def get_response_content(fs):
    # get the tree
    tree = Newick.parse(fs.tree, Newick.NewickTree)
    tree.assert_valid()
    # get the mixture weights
    weights = [fs.weight_a, fs.weight_b, fs.weight_c]
    # get the matrices
    matrices = [fs.matrix_a, fs.matrix_b, fs.matrix_c]
    for R in matrices:
        if R.shape != (4,4):
            msg = 'expected each nucleotide rate matrix to be 4x4'
            raise HandlingError(msg)
    # create the mixture proportions
    weight_sum = sum(weights)
    mixture_proportions = [weight / weight_sum for weight in weights]
    # create the rate matrix objects
    ordered_states = list('ACGT')
    rate_matrix_objects = []
    for R in matrices:
        rate_matrix_object = RateMatrix.RateMatrix(R.tolist(), ordered_states)
        rate_matrix_objects.append(rate_matrix_object)
    # create the mixture model
    mixture_model = SubModel.MixtureModel(mixture_proportions,
            rate_matrix_objects)
    # normalize the mixture model
    mixture_model.normalize()
    # simulate the alignment
    try:
        alignment = PhyLikelihood.simulate_alignment(tree,
                mixture_model, fs.ncols)
    except PhyLikelihood.SimulationError as e:
        raise HandlingError(e)
    # get the alignment
    arr = []
    for node in tree.gen_tips():
        arr.append(alignment.get_fasta_sequence(node.name))
    # return the alignment string
    return '\n'.join(arr) + '\n'
示例#8
0
def get_response_content(fs):
    # get the tree
    tree = Newick.parse(fs.tree, Newick.NewickTree)
    tree.assert_valid()
    # get the mixture weights
    weights = [fs.weight_a, fs.weight_b, fs.weight_c]
    # get the matrices
    matrices = [fs.matrix_a, fs.matrix_b, fs.matrix_c]
    for R in matrices:
        if R.shape != (4, 4):
            msg = 'expected each nucleotide rate matrix to be 4x4'
            raise HandlingError(msg)
    # create the mixture proportions
    weight_sum = sum(weights)
    mixture_proportions = [weight / weight_sum for weight in weights]
    # create the rate matrix objects
    ordered_states = list('ACGT')
    rate_matrix_objects = []
    for R in matrices:
        rate_matrix_object = RateMatrix.RateMatrix(R.tolist(), ordered_states)
        rate_matrix_objects.append(rate_matrix_object)
    # create the mixture model
    mixture_model = SubModel.MixtureModel(mixture_proportions,
                                          rate_matrix_objects)
    # normalize the mixture model
    mixture_model.normalize()
    # simulate the alignment
    try:
        alignment = PhyLikelihood.simulate_alignment(tree, mixture_model,
                                                     fs.ncols)
    except PhyLikelihood.SimulationError as e:
        raise HandlingError(e)
    # get the alignment
    arr = []
    for node in tree.gen_tips():
        arr.append(alignment.get_fasta_sequence(node.name))
    # return the alignment string
    return '\n'.join(arr) + '\n'
示例#9
0
def get_response(fs):
    """
    @param fs: a FieldStorage object containing the cgi arguments
    @return: a (response_headers, response_text) pair
    """
    # parse the tree
    try:
        tree = Newick.parse(fs.tree, Newick.NewickTree)
        tree.assert_valid()
    except Newick.NewickSyntaxError as e:
        raise HandlingError(str(e))
    # get the normalized model
    mixture_model = deserialize_mixture_model(fs.model)
    # sample the alignment, possibly using a specified seed
    try:
        alignment = PhyLikelihood.simulate_alignment(tree, mixture_model,
                                                     fs.ncols, fs.seed)
    except PhyLikelihood.SimulationError as e:
        raise HandlingError(e)
    # get the output string
    output_string = ''
    if fs.fastaformat:
        # the output is the alignment
        arr = []
        for node in tree.gen_tips():
            arr.append(alignment.get_fasta_sequence(node.name))
        alignment_string = '\n'.join(arr)
        output_string = alignment_string
    elif fs.nexusformat:
        # the output is the alignment and the tree
        nexus = Nexus.Nexus()
        nexus.tree = tree
        nexus.alignment = alignment
        output_string = str(nexus)
    # print the results
    response_headers = [('Content-Type', 'text/plain')]
    return response_headers, output_string
示例#10
0
def get_response(fs):
    """
    @param fs: a FieldStorage object containing the cgi arguments
    @return: a (response_headers, response_text) pair
    """
    # parse the tree
    try:
        tree = Newick.parse(fs.tree, Newick.NewickTree)
        tree.assert_valid()
    except Newick.NewickSyntaxError as e:
        raise HandlingError(str(e))
    # get the normalized model
    mixture_model = deserialize_mixture_model(fs.model)
    # sample the alignment, possibly using a specified seed
    try:
        alignment = PhyLikelihood.simulate_alignment(tree, mixture_model, fs.ncols, fs.seed)
    except PhyLikelihood.SimulationError as e:
        raise HandlingError(e)
    # get the output string
    output_string = ""
    if fs.fastaformat:
        # the output is the alignment
        arr = []
        for node in tree.gen_tips():
            arr.append(alignment.get_fasta_sequence(node.name))
        alignment_string = "\n".join(arr)
        output_string = alignment_string
    elif fs.nexusformat:
        # the output is the alignment and the tree
        nexus = Nexus.Nexus()
        nexus.tree = tree
        nexus.alignment = alignment
        output_string = str(nexus)
    # print the results
    response_headers = [("Content-Type", "text/plain")]
    return response_headers, output_string
示例#11
0
def get_response(fs):
    """
    @param fs: a FieldStorage object containing the cgi arguments
    @return: a (response_headers, response_text) pair
    """
    # parse the tree
    try:
        tree = Newick.parse(fs.tree, Newick.NewickTree)
        tree.assert_valid()
    except Newick.NewickSyntaxError as e:
        raise HandlingError(str(e))
    # get the mixture weights
    mixture_weights = [fs.weight_a, fs.weight_b]
    # get the kappa values
    kappa_values = [fs.kappa_a, fs.kappa_b]
    # get the nucleotide distributions
    frequency_strings = (fs.frequency_a, fs.frequency_b)
    nucleotide_distributions = []
    for nt_string in frequency_strings:
        d = SnippetUtil.get_distribution(nt_string, 'nucleotide', list('ACGT'))
        nucleotide_distributions.append(d)
    # create the nucleotide HKY rate matrix objects
    rate_matrix_objects = []
    for nt_distribution, kappa in zip(nucleotide_distributions, kappa_values):
        rate_matrix_object = RateMatrix.get_unscaled_hky85_rate_matrix(
            nt_distribution, kappa)
        rate_matrix_objects.append(rate_matrix_object)
    # create the mixture proportions
    weight_sum = sum(mixture_weights)
    mixture_proportions = [weight / weight_sum for weight in mixture_weights]
    # create the mixture model
    mixture_model = SubModel.MixtureModel(mixture_proportions,
                                          rate_matrix_objects)
    # normalize the mixture model
    mixture_model.normalize()
    # simulate the alignment
    try:
        alignment = PhyLikelihood.simulate_alignment(tree, mixture_model,
                                                     fs.ncols)
    except PhyLikelihood.SimulationError as e:
        raise HandlingError(e)
    # get the output string
    output_string = ''
    if fs.fasta:
        # the output is the alignment
        arr = []
        for node in tree.gen_tips():
            arr.append(alignment.get_fasta_sequence(node.name))
        alignment_string = '\n'.join(arr)
        output_string = alignment_string
    elif fs.nex:
        # the output is the alignment and the tree
        nexus = Nexus.Nexus()
        nexus.tree = tree
        nexus.alignment = alignment
        for i in range(2):
            arr = []
            arr.append('weight: %s' % mixture_weights[i])
            arr.append('kappa: %s' % kappa_values[i])
            nexus.add_comment('category %d: %s' % (i + 1, ', '.join(arr)))
        output_string = str(nexus)
    # define the filename
    if fs.fasta:
        filename_extension = 'fasta'
    elif fs.nex:
        filename_extension = 'nex'
    filename = 'sample.' + fs.fmt
    #TODO use the correct filename extension in the output
    return output_string
示例#12
0
def get_response(fs):
    """
    @param fs: a FieldStorage object containing the cgi arguments
    @return: a (response_headers, response_text) pair
    """
    # parse the tree
    try:
        tree = Newick.parse(fs.tree, Newick.NewickTree)
        tree.assert_valid()
    except Newick.NewickSyntaxError as e:
        raise HandlingError(str(e))
    # get the mixture weights
    mixture_weights = [fs.weight_a, fs.weight_b]
    # get the kappa values
    kappa_values = [fs.kappa_a, fs.kappa_b]
    # get the nucleotide distributions
    frequency_strings = (fs.frequency_a, fs.frequency_b)
    nucleotide_distributions = []
    for nt_string in frequency_strings:
        d = SnippetUtil.get_distribution(nt_string, 'nucleotide', list('ACGT'))
        nucleotide_distributions.append(d)
    # create the nucleotide HKY rate matrix objects
    rate_matrix_objects = []
    for nt_distribution, kappa in zip(nucleotide_distributions, kappa_values):
        rate_matrix_object = RateMatrix.get_unscaled_hky85_rate_matrix(
                nt_distribution, kappa)
        rate_matrix_objects.append(rate_matrix_object)
    # create the mixture proportions
    weight_sum = sum(mixture_weights)
    mixture_proportions = [weight / weight_sum for weight in mixture_weights]
    # create the mixture model
    mixture_model = SubModel.MixtureModel(
            mixture_proportions, rate_matrix_objects)
    # normalize the mixture model
    mixture_model.normalize()
    # simulate the alignment
    try:
        alignment = PhyLikelihood.simulate_alignment(
                tree, mixture_model, fs.ncols)
    except PhyLikelihood.SimulationError as e:
        raise HandlingError(e)
    # get the output string
    output_string = ''
    if fs.fasta:
        # the output is the alignment
        arr = []
        for node in tree.gen_tips():
            arr.append(alignment.get_fasta_sequence(node.name))
        alignment_string = '\n'.join(arr)
        output_string = alignment_string
    elif fs.nex:
        # the output is the alignment and the tree
        nexus = Nexus.Nexus()
        nexus.tree = tree
        nexus.alignment = alignment
        for i in range(2):
            arr = []
            arr.append('weight: %s' % mixture_weights[i])
            arr.append('kappa: %s' % kappa_values[i])
            nexus.add_comment('category %d: %s' % (i+1, ', '.join(arr)))
        output_string = str(nexus)
    # define the filename
    if fs.fasta:
        filename_extension = 'fasta'
    elif fs.nex:
        filename_extension = 'nex'
    filename = 'sample.' + fs.fmt
    #TODO use the correct filename extension in the output
    return output_string