if __name__ == '__main__': import NetLearning import Preprocessing import DataCreator import torch train, test = Preprocessing.DataPreparation(Preprocessing.GetData().do(), test_size=0).train_test_split() net, scores = NetLearning.Learn(epochs=30, train_loader=train).fit() best = net.get_best_model()
import pandas as pd from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import Preprocessing as pp import feature_selection as sel import eval import models from HyperParamTuning import RF_paramSearch # Read data dp = pp.DataPreparation() dp.find_nan() ## Check the number of missing values dp.rm_na("price") ## Remove columns with missing price values dp.impute_nans() ## Impute nan values according to documention dp.find_nan() ## Check if impute was succesful dp.replace_cat_variable([ "body-style", "make", "engine-type" ]) ## Transform some categorical variables into continous variables dp.cluster_groups( ) ## Transform some non-binary variables into binary categorical variables raw_data = dp.data ## Save data set after transformation bin_cols = [ "fuel-type", "aspiration", "num-of-doors", "engine-location", 'drive-wheels', 'fuel-system' ] cat_cols = [] #cyl_col = "num-of-cylinders" fe = pp.FeatureEncoding(raw_data)