def test_InitFromListDec(): for x in range(10, 15): fx = str(randint(10, 100000)) modulo = str(PyBigNumbers.GenerateRandPrimeDec(100)) listCoefficients = [] dec = 1 for i in range(x): # Generate random coefficients for the polynomial listCoefficients.append(str(randint(100000, 1000000))) # create a Polynomial from a list of coefficients allCoeffeicient = PyPolynomial.initFromList(listCoefficients, dec) assert len(allCoeffeicient) == x, "Test failed" # Calling evaluate polynomial function polynomialFX = polynomialEvaluation(listCoefficients, fx, modulo, dec) # convert list of coefficients from string to decimal lst = [] for i in range(len(allCoeffeicient)): lst.append(int(allCoeffeicient[i])) fx = int(fx) modulo = int(modulo) actualValue = polynomial_evaluate(lst, fx, modulo) assert polynomialFX == str(actualValue), "Test failed"
def test_RandomPolynomialDec(): for x in range(5): fx = PyBigNumbers.GenerateRandDec(256) degree = randint(10, 15) modulo = PyBigNumbers.GenerateRandPrimeDec(100) dec = 1 # create a random polynomial listCoefficients = PyPolynomial.randomPolynomial(degree, modulo, dec) assert len(listCoefficients) == (degree + 1), "Test failed" # calling evaluate polynomial function polynomialFX = polynomialEvaluation(listCoefficients, fx, modulo, dec) # convert list of coefficients from string to decimal lst = [] for i in range(len(listCoefficients)): lst.append(int(listCoefficients[i])) fx = int(fx) modulo = int(modulo) actualValue = polynomial_evaluate(lst, fx, modulo) assert polynomialFX == str(actualValue), "Test failed"
def test_GenerateRandPrimeDec(): #Generating prime decimal numbers with input parameter for x in range(10, 1000, 10): # Generate Random Prime Number of arbitary precision in dec primeDec_Value = PyBigNumbers.GenerateRandPrimeDec(x) # Verifying the actual value as prime number or not assert PyBigNumbers.isPrimeDec(primeDec_Value), "Test failed"
def test_LGInterpolatorSingleDec(): listTupleObj = [(1, "13"), (2, "4"), (3, "2"), (4, "5"), (5, "11"), (6, "1")] modulo = str(PyBigNumbers.GenerateRandPrimeDec(100)) dec = 1 xValue = str(randint(10, 100000)) for x in range(1, 6): xPoint = str(x) # LGInterpolator, evaluate the ith basis polynomial at xValue lgInterpolatorX = PyPolynomial.LGInterpolatorSingle( listTupleObj, modulo, xValue, xPoint, dec) assert type(lgInterpolatorX) == str, "Test failed"