def get_input_data(input_dir):
    file_names = (
        'alternatives.xml',
        'categories.xml',
        'categoriesProfiles.xml',
        'credibility.xml',
        'method_parameters.xml',
    )
    trees = get_trees(input_dir, file_names)

    alternatives = px.getAlternativesID(trees['alternatives'])
    categories = px.getCategoriesID(trees['categories'])
    categories_rank = px.getCategoriesRank(trees['categories'], categories)
    categories_profiles = get_categories_profiles_central(trees['categoriesProfiles'])
    credibility = getAlternativesComparisons(trees['credibility'], alternatives,
                                             categories_profiles)
    cut_threshold = px.getParameterByName(trees['method_parameters'], 'cut_threshold')
    check_cut_threshold(cut_threshold)

    ret = {
        'alternatives': alternatives,
        'categories_rank': categories_rank,
        'categories_profiles': categories_profiles,
        'credibility': credibility,
        'cut_threshold': cut_threshold,
    }
    return ret
示例#2
0
 def _sort_profiles (category_profiles, categories_names, rank_tree):
     sortedCategories = {}
     categories_rank = px.getCategoriesRank(rank_tree, categories_names)
     for category in categories_rank:
         sortedCategories[categories_rank[category]] = {}
         sortedCategories[categories_rank[category]]["classes"] = category_profiles[category]
         sortedCategories[categories_rank[category]]["id"] = category
     return sortedCategories
示例#3
0
def parse_xmcda_files(in_dir):
    xml_crit = PyXMCDA.parseValidate(in_dir+"/criteria.xml")
    xml_alt = PyXMCDA.parseValidate(in_dir+"/alternatives.xml")
    xml_pt = PyXMCDA.parseValidate(in_dir+"/perfs_table.xml")
    xml_assign = PyXMCDA.parseValidate(in_dir+"/assign.xml")
    xml_cat = PyXMCDA.parseValidate(in_dir+"/categories.xml")

    if xml_crit == None:
        error_list.append("Invalid criteria file")
        return
    if xml_alt == None:
        error_list.append("Invalid alternative file")
        return
    if xml_pt == None:
        error_list.append("Invalid performance table file")
        return
    if xml_assign == None:
        error_list.append("Invalid assignment file")
        return
    if xml_cat == None:
        error_list.append("Invalid categories file")
        return

    try:
        alt_id = PyXMCDA.getAlternativesID(xml_alt)
        crit_id = PyXMCDA.getCriteriaID(xml_crit)
        pt = PyXMCDA.getPerformanceTable(xml_pt, alt_id, crit_id)
        cat_id = PyXMCDA.getCategoriesID(xml_cat)
        cat_rank = PyXMCDA.getCategoriesRank(xml_cat, cat_id)
        assign = PyXMCDA.getAlternativesAffectations(xml_assign)
        pref_dir = PyXMCDA.getCriteriaPreferenceDirections(xml_crit, crit_id)
    except:
        error_list.append("Failed to parse one or more file")
        return

    return (alt_id, crit_id, pt, cat_id, cat_rank, assign, pref_dir)
示例#4
0
def main(argv=None):
	if argv is None:
		argv = sys.argv
	
	parser = OptionParser()
	
	parser.add_option("-i", "--in", dest="in_dir")
	parser.add_option("-o", "--out", dest="out_dir")
	
	(options, args) = parser.parse_args(argv[1:])
	
	in_dir = options.in_dir
	out_dir = options.out_dir
	
	# Creating lists for error and log messages
	errorList = []
	logList = []
	
	# If some mandatory input files are missing
	if not os.path.isfile (in_dir+"/alternatives.xml") or not os.path.isfile (in_dir+"/categories.xml") or not os.path.isfile (in_dir+"/categoriesProfiles.xml") or not os.path.isfile (in_dir+"/stabilityRelation.xml"):
		errorList.append("Some input files are missing")
	
	else :
		
		if os.path.isfile (in_dir+"/sortingMode.xml") :
			xmltree_mode = PyXMCDA.parseValidate(in_dir+"/sortingMode.xml")
			if xmltree_mode == None :
				errorList.append ("sortingMode file cannot be validated.")
			else :
				mode = PyXMCDA.getParameterByName (xmltree_mode, "sortingMode")
				if not (mode == "pessimistic" or mode == "optimistic"):
					errorList.append ("Value of parameter sortingMode should be 'pessimistic' or 'optimistic'.")			
			
		xmltree_alternatives = PyXMCDA.parseValidate(in_dir+"/alternatives.xml")
		xmltree_categories = PyXMCDA.parseValidate(in_dir+"/categories.xml")
		xmltree_profiles = PyXMCDA.parseValidate(in_dir+"/categoriesProfiles.xml")
		xmltree_altStability = PyXMCDA.parseValidate(in_dir+"/stabilityRelation.xml")
		
		if xmltree_alternatives == None :
			errorList.append("The alternatives file cannot be validated.")
		if xmltree_categories == None :
			errorList.append("The categories file cannot be validated.")
		if xmltree_profiles == None :
			errorList.append("The categoriesProfiles file cannot be validated.")
		if xmltree_altStability == None :
			errorList.append("The alternatives comparisons file cannot be validated.")
				
		if not errorList :
		
			alternativesId = PyXMCDA.getAlternativesID(xmltree_alternatives, "ACTIVEREAL")
			allalt = PyXMCDA.getAlternativesID(xmltree_alternatives, "ACTIVE")
			categoriesId = PyXMCDA.getCategoriesID(xmltree_categories)
			categoriesRank = PyXMCDA.getCategoriesRank(xmltree_categories, categoriesId)
			altStability = PyXMCDA.getAlternativesComparisons (xmltree_altStability, allalt)
			
			if not alternativesId:
				errorList.append("No alternatives found.")
			if not categoriesId:
				errorList.append("No categories found.")
			if not altStability :
				errorList.append("No alternatives comparisons found.")
					
	if not errorList :
		
		catPro = PyXMCDA.getCategoriesProfiles(xmltree_profiles, categoriesId)
		proCat = PyXMCDA.getProfilesCategories(xmltree_profiles, categoriesId)
		profilesId = proCat.keys()
		
		# On retourne la liste pour trier selon les rangs
		rankCategories = {}
		for i, j in categoriesRank.iteritems():
			rankCategories[j] = i
			
		ranks = rankCategories.keys()[:]
		
		ranks.sort()
		lowestRank = ranks.pop()
		
		# Un tableau pour conserver les affectations
		affectations = {}
		
		if mode == "pessimistic":
			# Electre tri pessimistic rule
			for alt in alternativesId:
				affectations[alt] = []
				for rank in ranks:
					profile = catPro[rankCategories[rank]]["lower"]
					if altStability[alt][profile] >= -1 and altStability[alt][profile] <= 1:
						# Surclassement instable, on ajoute les categories sup et inf
						if affectations[alt].count(proCat[profile]["lower"]) == 0:
							affectations[alt].append(proCat[profile]["lower"])
						if affectations[alt].count(proCat[profile]["upper"]) == 0:
							affectations[alt].append(proCat[profile]["upper"])
					if altStability[alt][profile] > 1:
						# Surclassement stable, on ajoute que sup et on arrete
						if affectations[alt].count(proCat[profile]["upper"]) == 0:
							affectations[alt].append(proCat[profile]["upper"])
							break
				
				if affectations[alt] == []:
					# Tous les surc stables et negatifs, on force la categorie la plus basse
					affectations[alt] = [rankCategories[lowestRank]]

		else:
			errorList.append("Optimistic rule is not taken into account yet")
	
	if not errorList :	
					
		# Creating alternativesAffectations file
		fileAffectations = open(out_dir+"/alternativesAffectations.xml",'w')
		PyXMCDA.writeHeader(fileAffectations)
		
		# We write some information about the generated file
		fileAffectations.write ("\t<projectReference>\n\t\t<title>Stable alternatives affectation</title>\n\t\t<version>"+VERSION+"</version>\n\t\t<author>ws_PyXMCDA suite (TV)</author>\n\t</projectReference>\n\n")
		
		fileAffectations.write("\t<alternativesAffectations>\n")
		
		for alt in alternativesId:
			fileAffectations.write("\t\t<alternativeAffectation>\n\t\t\t<alternativeID>"+alt+"</alternativeID>\n\t\t\t<categoriesSet>\n")
			
			for cat in affectations[alt]:
				fileAffectations.write("\t\t\t\t<element><categoryID>"+cat+"</categoryID></element>\n")

			fileAffectations.write("\t\t\t</categoriesSet>\n\t\t</alternativeAffectation>\n")
		
		fileAffectations.write("\t</alternativesAffectations>\n")
		PyXMCDA.writeFooter(fileAffectations)
		fileAffectations.close()
	
	
	# Creating log and error file, messages.xml
	fileMessages = open(out_dir+"/messages.xml", 'w')
	PyXMCDA.writeHeader (fileMessages)
	
	if not errorList :
		logList.append("Execution ok")
		PyXMCDA.writeLogMessages (fileMessages, logList)
	else :
		PyXMCDA.writeErrorMessages (fileMessages, errorList)
		
	PyXMCDA.writeFooter(fileMessages)
	fileMessages.close()
示例#5
0
def get_input_data(input_dir, filenames, params, **kwargs):
    trees = _get_trees(input_dir, filenames)
    d = _create_data_object(params)
    for p in params:
        if p == 'alternatives':
            d.alternatives = px.getAlternativesID(trees['alternatives'])

        elif p == 'categories_profiles':
            comparison_with = kwargs.get('comparison_with')
            if comparison_with is None:
                comparison_with = px.getParameterByName(
                    trees['method_parameters'], 'comparison_with')
            d.categories_profiles = _get_categories_profiles(
                trees.get('categories_profiles'), comparison_with)

        elif p == 'categories_rank':
            categories = px.getCategoriesID(trees['categories'])
            d.categories_rank = px.getCategoriesRank(trees['categories'],
                                                     categories)

        elif p == 'comparison_with':
            d.comparison_with = px.getParameterByName(
                trees['method_parameters'], 'comparison_with')

        elif p == 'concordance':
            alternatives = px.getAlternativesID(trees['alternatives'])
            comparison_with = px.getParameterByName(trees['method_parameters'],
                                                    'comparison_with')
            if comparison_with in ('boundary_profiles', 'central_profiles'):
                categories_profiles = _get_categories_profiles(
                    trees['categories_profiles'], comparison_with)
                d.concordance = _get_alternatives_comparisons(
                    trees['concordance'], alternatives, categories_profiles)
            else:
                d.concordance = px.getAlternativesComparisons(
                    trees['concordance'], alternatives)

        elif p == 'credibility':
            alternatives = px.getAlternativesID(trees['alternatives'])
            comparison_with = kwargs.get('comparison_with')
            if not comparison_with:
                comparison_with = px.getParameterByName(
                    trees['method_parameters'], 'comparison_with')
            if comparison_with in ('boundary_profiles', 'central_profiles'):
                categories_profiles = _get_categories_profiles(
                    trees['categories_profiles'], comparison_with)
            else:
                categories_profiles = None
            eliminate_cycles_method = px.getParameterByName(
                trees.get('method_parameters'), 'eliminate_cycles_method')
            tree = trees.get('credibility')
            if eliminate_cycles_method == 'cut_weakest' and tree is None:
                raise RuntimeError(
                    "'cut_weakest' option requires credibility as "
                    "an additional input (apart from outranking).")
            d.credibility = _get_alternatives_comparisons(
                tree, alternatives, categories_profiles=categories_profiles)

        elif p == 'criteria':
            d.criteria = px.getCriteriaID(trees['criteria'])

        elif p == 'cut_threshold':
            cut_threshold = px.getParameterByName(trees['method_parameters'],
                                                  'cut_threshold')
            if cut_threshold is None or not (0 <= float(cut_threshold) <= 1):
                raise RuntimeError(
                    "'cut_threshold' should be in range [0, 1] "
                    "(most commonly used values are 0.6 or 0.7).")
            d.cut_threshold = cut_threshold

        # 'cv_crossed' == 'counter-veto crossed'
        elif p == 'cv_crossed':
            alternatives = px.getAlternativesID(trees['alternatives'])
            comparison_with = px.getParameterByName(trees['method_parameters'],
                                                    'comparison_with')
            if comparison_with in ('boundary_profiles', 'central_profiles'):
                categories_profiles = _get_categories_profiles(
                    trees['categories_profiles'], comparison_with)
            else:
                categories_profiles = None
            d.cv_crossed = _get_alternatives_comparisons(
                trees['counter_veto_crossed'],
                alternatives,
                categories_profiles=categories_profiles,
                use_partials=True,
                mcda_concept='counterVetoCrossed')

        elif p == 'discordance':
            alternatives = px.getAlternativesID(trees['alternatives'])
            comparison_with = px.getParameterByName(trees['method_parameters'],
                                                    'comparison_with')
            if kwargs.get('use_partials') is not None:
                use_partials = kwargs.get('use_partials')
            else:
                parameter = px.getParameterByName(trees['method_parameters'],
                                                  'use_partials')
                use_partials = True if parameter == 'true' else False
            if comparison_with in ('boundary_profiles', 'central_profiles'):
                categories_profiles = _get_categories_profiles(
                    trees['categories_profiles'], comparison_with)
            else:
                categories_profiles = None
            d.discordance = _get_alternatives_comparisons(
                trees['discordance'],
                alternatives,
                categories_profiles=categories_profiles,
                use_partials=use_partials)

        elif p == 'eliminate_cycles_method':
            d.eliminate_cycles_method = px.getParameterByName(
                trees['method_parameters'], 'eliminate_cycles_method')

        elif p == 'interactions':
            criteria = px.getCriteriaID(trees['criteria'])
            d.interactions = _get_criteria_interactions(
                trees['interactions'], criteria)

        elif p == 'outranking':
            d.outranking = _get_outranking_crisp(trees['outranking'])

        elif p == 'performances':
            d.performances = px.getPerformanceTable(trees['performance_table'],
                                                    None, None)

        elif p == 'pref_directions':
            criteria = px.getCriteriaID(trees['criteria'])
            d.pref_directions = px.getCriteriaPreferenceDirections(
                trees['criteria'], criteria)

        elif p == 'profiles_performance_table':
            if comparison_with in ('boundary_profiles', 'central_profiles'):
                tree = trees.get('profiles_performance_table')
                if tree is None:
                    msg = (
                        "Missing profiles performance table (did you forget "
                        "to provide 'profiles_performance_table.xml' file?).")
                    raise RuntimeError(msg)
                d.profiles_performance_table = px.getPerformanceTable(
                    tree, None, None)
            else:
                d.profiles_performance_table = None

        elif p == 'reinforcement_factors':
            criteria = px.getCriteriaID(trees['criteria'])
            factors = {}
            for c in criteria:
                rf = px.getCriterionValue(trees['reinforcement_factors'], c,
                                          'reinforcement_factors')
                if len(rf) == 0:
                    continue
                if rf.get(c) <= 1:
                    msg = ("Reinforcement factor for criterion '{}' should be "
                           "higher than 1.0 (ideally between 1.2 and 1.5).")
                    raise RuntimeError(msg)
                factors.update(rf)
            d.reinforcement_factors = factors

        elif p == 'thresholds':
            criteria = px.getCriteriaID(trees['criteria'])
            d.thresholds = _get_thresholds(trees['criteria'])

        elif p == 'weights':
            criteria = px.getCriteriaID(trees['criteria'])
            d.weights = px.getCriterionValue(trees['weights'], criteria)

        elif p == 'z_function':
            d.z_function = px.getParameterByName(trees['method_parameters'],
                                                 'z_function')

        elif p == 'with_denominator':
            parameter = px.getParameterByName(trees['method_parameters'],
                                              'with_denominator')
            d.with_denominator = True if parameter == 'true' else False

        elif p == 'only_max_discordance':
            parameter = px.getParameterByName(trees['method_parameters'],
                                              'only_max_discordance')
            d.only_max_discordance = True if parameter == 'true' else False

        elif p == 'use_partials':
            parameter = px.getParameterByName(trees['method_parameters'],
                                              'use_partials')
            d.use_partials = True if parameter == 'true' else False

        elif p == 'use_pre_veto':
            parameter = px.getParameterByName(trees['method_parameters'],
                                              'use_pre_veto')
            d.use_pre_veto = True if parameter == 'true' else False

        else:
            raise RuntimeError("Unknown parameter '{}' specified.".format(p))

    for param in params:
        data = getattr(d, param)
        if type(data) in (type(list), type(dict)) and len(data) == 0:
            raise RuntimeError(
                "No content for '{}' parameter provided.".format(param))
    return d
示例#6
0
 def get_categories_rank(*args, **kwargs):
     categories = px.getCategoriesID(trees['categories'])
     categories_rank = px.getCategoriesRank(trees['categories'], categories)
     return categories_rank  # dict
示例#7
0
def get_input_data(input_dir, filenames, params, **kwargs):
    trees = _get_trees(input_dir, filenames)
    d = _create_data_object(params)
    for p in params:
        if p == 'alternatives':
            d.alternatives = px.getAlternativesID(trees['alternatives'])

        elif p == 'categories_profiles':
            comparison_with = kwargs.get('comparison_with')
            if comparison_with is None:
                comparison_with = px.getParameterByName(trees['method_parameters'], 'comparison_with')
            d.categories_profiles = _get_categories_profiles(trees.get('categories_profiles'),
                                                             comparison_with)

        elif p == 'categories_rank':
            categories = px.getCategoriesID(trees['categories'])
            d.categories_rank = px.getCategoriesRank(trees['categories'], categories)

        elif p == 'comparison_with':
            d.comparison_with = px.getParameterByName(trees['method_parameters'], 'comparison_with')

        elif p == 'concordance':
            alternatives = px.getAlternativesID(trees['alternatives'])
            comparison_with = px.getParameterByName(trees['method_parameters'], 'comparison_with')
            if comparison_with in ('boundary_profiles', 'central_profiles'):
                categories_profiles = _get_categories_profiles(trees['categories_profiles'],
                                                               comparison_with)
                d.concordance = _get_alternatives_comparisons(trees['concordance'], alternatives,
                                                              categories_profiles)
            else:
                d.concordance = px.getAlternativesComparisons(trees['concordance'], alternatives)

        elif p == 'credibility':
            alternatives = px.getAlternativesID(trees['alternatives'])
            comparison_with = kwargs.get('comparison_with')
            if not comparison_with:
                comparison_with = px.getParameterByName(trees['method_parameters'], 'comparison_with')
            if comparison_with in ('boundary_profiles', 'central_profiles'):
                categories_profiles = _get_categories_profiles(trees['categories_profiles'],
                                                               comparison_with)
            else:
                categories_profiles = None
            eliminate_cycles_method = px.getParameterByName(trees.get('method_parameters'),
                                                            'eliminate_cycles_method')
            tree = trees.get('credibility')
            if eliminate_cycles_method == 'cut_weakest' and tree is None:
                raise RuntimeError("'cut_weakest' option requires credibility as "
                                   "an additional input (apart from outranking).")
            d.credibility = _get_alternatives_comparisons(tree, alternatives,
                                                          categories_profiles=categories_profiles)

        elif p == 'criteria':
            d.criteria = px.getCriteriaID(trees['criteria'])

        elif p == 'cut_threshold':
            cut_threshold = px.getParameterByName(trees['method_parameters'], 'cut_threshold')
            if cut_threshold is None or not (0 <= float(cut_threshold) <= 1):
                raise RuntimeError(
                    "'cut_threshold' should be in range [0, 1] "
                    "(most commonly used values are 0.6 or 0.7)."
                )
            d.cut_threshold = cut_threshold

        # 'cv_crossed' == 'counter-veto crossed'
        elif p == 'cv_crossed':
            alternatives = px.getAlternativesID(trees['alternatives'])
            comparison_with = px.getParameterByName(trees['method_parameters'], 'comparison_with')
            if comparison_with in ('boundary_profiles', 'central_profiles'):
                categories_profiles = _get_categories_profiles(trees['categories_profiles'],
                                                               comparison_with)
            else:
                categories_profiles = None
            d.cv_crossed = _get_alternatives_comparisons(trees['counter_veto_crossed'],
                                                         alternatives,
                                                         categories_profiles=categories_profiles,
                                                         use_partials=True,
                                                         mcda_concept='counterVetoCrossed')

        elif p == 'discordance':
            alternatives = px.getAlternativesID(trees['alternatives'])
            comparison_with = px.getParameterByName(trees['method_parameters'], 'comparison_with')
            if kwargs.get('use_partials') is not None:
                use_partials = kwargs.get('use_partials')
            else:
                parameter = px.getParameterByName(trees['method_parameters'], 'use_partials')
                use_partials = True if parameter == 'true' else False
            if comparison_with in ('boundary_profiles', 'central_profiles'):
                categories_profiles = _get_categories_profiles(trees['categories_profiles'],
                                                               comparison_with)
            else:
                categories_profiles = None
            d.discordance = _get_alternatives_comparisons(trees['discordance'], alternatives,
                                                          categories_profiles=categories_profiles,
                                                          use_partials=use_partials)

        elif p == 'eliminate_cycles_method':
            d.eliminate_cycles_method = px.getParameterByName(trees['method_parameters'],
                                                              'eliminate_cycles_method')

        elif p == 'interactions':
            criteria = px.getCriteriaID(trees['criteria'])
            d.interactions = _get_criteria_interactions(trees['interactions'], criteria)

        elif p == 'outranking':
            d.outranking = _get_outranking_crisp(trees['outranking'])

        elif p == 'performances':
            d.performances = px.getPerformanceTable(trees['performance_table'], None, None)

        elif p == 'pref_directions':
            criteria = px.getCriteriaID(trees['criteria'])
            d.pref_directions = px.getCriteriaPreferenceDirections(trees['criteria'], criteria)

        elif p == 'profiles_performance_table':
            if comparison_with in ('boundary_profiles', 'central_profiles'):
                tree = trees.get('profiles_performance_table')
                if tree is None:
                    msg = ("Missing profiles performance table (did you forget "
                           "to provide 'profiles_performance_table.xml' file?).")
                    raise RuntimeError(msg)
                d.profiles_performance_table = px.getPerformanceTable(tree, None, None)
            else:
                d.profiles_performance_table = None

        elif p == 'reinforcement_factors':
            criteria = px.getCriteriaID(trees['criteria'])
            factors = {}
            for c in criteria:
                rf = px.getCriterionValue(trees['reinforcement_factors'], c,
                                          'reinforcement_factors')
                if len(rf) == 0:
                    continue
                if rf.get(c) <= 1:
                    msg = ("Reinforcement factor for criterion '{}' should be "
                           "higher than 1.0 (ideally between 1.2 and 1.5).")
                    raise RuntimeError(msg)
                factors.update(rf)
            d.reinforcement_factors = factors

        elif p == 'thresholds':
            criteria = px.getCriteriaID(trees['criteria'])
            d.thresholds = _get_thresholds(trees['criteria'])

        elif p == 'weights':
            criteria = px.getCriteriaID(trees['criteria'])
            d.weights = px.getCriterionValue(trees['weights'], criteria)

        elif p == 'z_function':
            d.z_function = px.getParameterByName(trees['method_parameters'], 'z_function')

        elif p == 'with_denominator':
            parameter = px.getParameterByName(trees['method_parameters'], 'with_denominator')
            d.with_denominator = True if parameter == 'true' else False

        elif p == 'only_max_discordance':
            parameter = px.getParameterByName(trees['method_parameters'], 'only_max_discordance')
            d.only_max_discordance = True if parameter == 'true' else False

        elif p == 'use_partials':
            parameter = px.getParameterByName(trees['method_parameters'], 'use_partials')
            d.use_partials = True if parameter == 'true' else False

        elif p == 'use_pre_veto':
            parameter = px.getParameterByName(trees['method_parameters'], 'use_pre_veto')
            d.use_pre_veto = True if parameter == 'true' else False

        else:
            raise RuntimeError("Unknown parameter '{}' specified.".format(p))

    for param in params:
        data = getattr(d, param)
        if type(data) in (type(list), type(dict)) and len(data) == 0:
            raise RuntimeError("No content for '{}' parameter provided."
                               .format(param))
    return d
示例#8
0
def get_input_data(input_dir, filenames, params, **kwargs):
    trees = _get_trees(input_dir, filenames)
    d = _create_data_object(params)
    for p in params:
        if p == "alternatives":
            d.alternatives = px.getAlternativesID(trees["alternatives"])

        elif p == "profiles":
            d.profiles = px.getProfilesID(trees["profiles"])

        elif p == "categories_profiles":
            comparison_with = kwargs.get("comparison_with")
            if comparison_with is None:
                comparison_with = px.getParameterByName(trees["method_parameters"], "comparison_with")
            d.categories_profiles = _get_categories_profiles(trees.get("categories_profiles"), comparison_with)

        elif p == "categories_rank":
            categories = px.getCategoriesID(trees["categories"])
            d.categories_rank = px.getCategoriesRank(trees["categories"], categories)

        elif p == "comparison_with":
            d.comparison_with = px.getParameterByName(trees["method_parameters"], "comparison_with")

        elif p == "concordance":

            alternatives = px.getAlternativesID(trees["alternatives"])

            comparison_with = kwargs.get("comparison_with")

            if trees.has_key("methos_parameters"):
                comparison_with = px.getParameterByName(trees["method_parameters"], "comparison_with")

            if kwargs.get("use_partials") is not None:
                use_partials = kwargs.get("use_partials")
            else:
                if trees.has_key("methos_parameters"):
                    parameter = px.getParameterByName(trees["method_parameters"], "use_partials")
                    use_partials = True if parameter == "true" else False

            categories_profiles = None
            profiles = None

            if comparison_with in ("boundary_profiles", "central_profiles"):
                categories_profiles = _get_categories_profiles(trees["categories_profiles"], comparison_with)
            if comparison_with == "profiles":
                profiles = px.getProfilesID(trees["profiles"])

            d.concordance = _get_alternatives_comparisons(
                trees["concordance"],
                alternatives,
                profiles=profiles,
                categories_profiles=categories_profiles,
                use_partials=use_partials,
            )
        elif p == "crisp_concordance":

            alternatives = px.getAlternativesID(trees["alternatives"])

            comparison_with = kwargs.get("comparison_with")

            if trees.has_key("methos_parameters"):
                comparison_with = px.getParameterByName(trees["method_parameters"], "comparison_with")

            if kwargs.get("use_partials") is not None:
                use_partials = kwargs.get("use_partials")
            else:
                if trees.has_key("methos_parameters"):
                    parameter = px.getParameterByName(trees["method_parameters"], "use_partials")
                    use_partials = True if parameter == "true" else False

            categories_profiles = None
            profiles = None

            if comparison_with in ("boundary_profiles", "central_profiles"):
                categories_profiles = _get_categories_profiles(trees["categories_profiles"], comparison_with)
            if comparison_with == "profiles":
                profiles = px.getProfilesID(trees["profiles"])

            d.concordance = _get_alternatives_comparisons(
                trees["concordance"],
                alternatives,
                profiles=profiles,
                categories_profiles=categories_profiles,
                use_partials=use_partials,
                use_value=False,
            )

        elif p == "credibility":
            alternatives = px.getAlternativesID(trees["alternatives"])
            comparison_with = kwargs.get("comparison_with")
            if not comparison_with:
                comparison_with = px.getParameterByName(trees["method_parameters"], "comparison_with")
            if comparison_with in ("boundary_profiles", "central_profiles"):
                categories_profiles = _get_categories_profiles(trees["categories_profiles"], comparison_with)
            else:
                categories_profiles = None
            eliminate_cycles_method = px.getParameterByName(trees.get("method_parameters"), "eliminate_cycles_method")
            tree = trees.get("credibility")
            if eliminate_cycles_method == "cut_weakest" and tree is None:
                raise RuntimeError(
                    "'cut_weakest' option requires credibility as " "an additional input (apart from outranking)."
                )
            d.credibility = _get_alternatives_comparisons(tree, alternatives, categories_profiles=categories_profiles)

        elif p == "criteria":
            if trees.has_key("criteria"):
                d.criteria = px.getCriteriaID(trees["criteria"])

        elif p == "cut_threshold":
            cut_threshold = px.getParameterByName(trees["method_parameters"], "cut_threshold")
            if cut_threshold is None or not (0 <= float(cut_threshold) <= 1):
                raise RuntimeError(
                    "'cut_threshold' should be in range [0, 1] " "(most commonly used values are 0.6 or 0.7)."
                )
            d.cut_threshold = cut_threshold

        # 'cv_crossed' == 'counter-veto crossed'
        elif p == "cv_crossed":
            alternatives = px.getAlternativesID(trees["alternatives"])
            comparison_with = px.getParameterByName(trees["method_parameters"], "comparison_with")
            if comparison_with in ("boundary_profiles", "central_profiles"):
                categories_profiles = _get_categories_profiles(trees["categories_profiles"], comparison_with)
            else:
                categories_profiles = None
            d.cv_crossed = _get_alternatives_comparisons(
                trees["counter_veto_crossed"],
                alternatives,
                categories_profiles=categories_profiles,
                use_partials=True,
                mcda_concept="counterVetoCrossed",
            )

        elif p == "discordance":

            alternatives = px.getAlternativesID(trees["alternatives"])

            comparison_with = kwargs.get("comparison_with")

            if trees.has_key("methos_parameters"):
                comparison_with = px.getParameterByName(trees["method_parameters"], "comparison_with")

            if kwargs.get("use_partials") is not None:
                use_partials = kwargs.get("use_partials")
            else:
                if trees.has_key("methos_parameters"):
                    parameter = px.getParameterByName(trees["method_parameters"], "use_partials")
                    use_partials = True if parameter == "true" else False

            categories_profiles = None
            profiles = None

            if comparison_with in ("boundary_profiles", "central_profiles"):
                categories_profiles = _get_categories_profiles(trees["categories_profiles"], comparison_with)
            if comparison_with == "profiles":
                profiles = px.getProfilesID(trees["profiles"])

            d.discordance = _get_alternatives_comparisons(
                trees["discordance"],
                alternatives,
                profiles=profiles,
                categories_profiles=categories_profiles,
                use_partials=use_partials,
            )

        elif p == "crisp_discordance":

            alternatives = px.getAlternativesID(trees["alternatives"])

            comparison_with = kwargs.get("comparison_with")

            if trees.has_key("methos_parameters"):
                comparison_with = px.getParameterByName(trees["method_parameters"], "comparison_with")

            if kwargs.get("use_partials") is not None:
                use_partials = kwargs.get("use_partials")
            else:
                if trees.has_key("methos_parameters"):
                    parameter = px.getParameterByName(trees["method_parameters"], "use_partials")
                    use_partials = True if parameter == "true" else False

            categories_profiles = None
            profiles = None

            if comparison_with in ("boundary_profiles", "central_profiles"):
                categories_profiles = _get_categories_profiles(trees["categories_profiles"], comparison_with)
            if comparison_with == "profiles":
                profiles = px.getProfilesID(trees["profiles"])

            d.discordance = _get_alternatives_comparisons(
                trees["discordance"],
                alternatives,
                profiles=profiles,
                categories_profiles=categories_profiles,
                use_partials=use_partials,
                use_value=False,
            )

        elif p == "preorder":

            if trees.has_key("preorder"):
                alternatives = px.getAlternativesID(trees["alternatives"])
                d.preorder = px.getAlternativeValue(trees["preorder"], alternatives, None)

        elif p == "downwards":

            alternatives = px.getAlternativesID(trees["alternatives"])
            d.downwards = px.getAlternativeValue(trees["downwards"], alternatives, None)

        elif p == "upwards":

            alternatives = px.getAlternativesID(trees["alternatives"])
            d.upwards = px.getAlternativeValue(trees["upwards"], alternatives, None)

        elif p == "eliminate_cycles_method":
            d.eliminate_cycles_method = px.getParameterByName(trees["method_parameters"], "eliminate_cycles_method")

        elif p == "interactions":
            criteria = px.getCriteriaID(trees["criteria"])
            d.interactions = _get_criteria_interactions(trees["interactions"], criteria)

        elif p == "outranking":
            alternatives = px.getAlternativesID(trees["alternatives"])
            outranking = _get_intersection_distillation(trees["outranking"], alternatives)
            if outranking == None:
                outranking = px.getAlternativesComparisons(trees["outranking"], alternatives)
            if outranking == {}:
                outranking = _get_outranking(trees["outranking"])
            d.outranking = outranking
        elif p == "nonoutranking":
            if trees.has_key("nonoutranking"):
                alternatives = px.getAlternativesID(trees["alternatives"])
                nonoutranking = _get_intersection_distillation(trees["nonoutranking"], alternatives)
                if nonoutranking == None:
                    nonoutranking = px.getAlternativesComparisons(trees["nonoutranking"], alternatives)
                if nonoutranking == {}:
                    nonoutranking = _get_outranking(trees["nonoutranking"])
                d.nonoutranking = nonoutranking
        elif p == "performances":
            d.performances = px.getPerformanceTable(trees["performance_table"], None, None)

        elif p == "pref_directions":
            criteria = px.getCriteriaID(trees["criteria"])
            d.pref_directions = px.getCriteriaPreferenceDirections(trees["criteria"], criteria)

        elif p == "profiles_performance_table":
            if comparison_with in ("boundary_profiles", "central_profiles"):
                tree = trees.get("profiles_performance_table")
                if tree is None:
                    msg = (
                        "Missing profiles performance table (did you forget "
                        "to provide 'profiles_performance_table.xml' file?)."
                    )
                    raise RuntimeError(msg)
                d.profiles_performance_table = px.getPerformanceTable(tree, None, None)
            else:
                d.profiles_performance_table = None

        elif p == "reinforcement_factors":
            criteria = px.getCriteriaID(trees["criteria"])
            factors = {}
            for c in criteria:
                rf = px.getCriterionValue(trees["reinforcement_factors"], c, "reinforcement_factors")
                if len(rf) == 0:
                    continue
                if rf.get(c) <= 1:
                    msg = (
                        "Reinforcement factor for criterion '{}' should be "
                        "higher than 1.0 (ideally between 1.2 and 1.5)."
                    )
                    raise RuntimeError(msg)
                factors.update(rf)
            d.reinforcement_factors = factors

        elif p == "thresholds":
            criteria = px.getCriteriaID(trees["criteria"])
            d.thresholds = _get_thresholds(trees["criteria"])

        elif p == "weights":
            criteria = px.getCriteriaID(trees["criteria"])
            d.weights = px.getCriterionValue(trees["weights"], criteria)

        elif p == "z_function":
            d.z_function = px.getParameterByName(trees["method_parameters"], "z_function")

        elif p == "with_denominator":
            parameter = px.getParameterByName(trees["method_parameters"], "with_denominator")
            d.with_denominator = True if parameter == "true" else False

        elif p == "use_partials":
            parameter = px.getParameterByName(trees["method_parameters"], "use_partials")
            d.use_partials = True if parameter == "true" else False

        elif p == "use_pre_veto":
            parameter = px.getParameterByName(trees["method_parameters"], "use_pre_veto")
            d.use_pre_veto = True if parameter == "true" else False

        elif p == "alpha":
            d.alpha = px.getParameterByName(trees["method_parameters"], "alpha")

        elif p == "beta":
            d.beta = px.getParameterByName(trees["method_parameters"], "beta")

        elif p == "s1":
            d.s1 = px.getParameterByName(trees["method_parameters"], "s1")

        elif p == "s2":
            d.s2 = px.getParameterByName(trees["method_parameters"], "s2")

        elif p == "crisp_outranking":
            d.crisp_outranking = px.getParameterByName(trees["method_parameters"], "crisp_outranking")

        elif p == "direction":
            d.direction = px.getParameterByName(trees["method_parameters"], "direction")

        elif p == "conc_threshold":
            d.conc_threshold = px.getParameterByName(trees["method_parameters"], "conc_threshold")

        elif p == "disc_threshold":
            d.disc_threshold = px.getParameterByName(trees["method_parameters"], "disc_threshold")

        elif p == "comprehensive":
            d.comprehensive = px.getParameterByName(trees["method_parameters"], "comprehensive")

        else:
            raise RuntimeError("Unknown parameter '{}' specified.".format(p))

    return d
示例#9
0
 def get_categories_rank(*args, **kwargs):
     categories = px.getCategoriesID(trees['categories'])
     categories_rank = px.getCategoriesRank(trees['categories'], categories)
     return categories_rank  # dict