def Cone0(x1,y1,x2,y2,t,q,s,m=10,n=10): curve = [[0,0]] for i in range(m): ti = 1.0*i/(m-1) xi = mapto.MapTo(0,x1,1,x2, ti) yi = mapto.MapTo(0,y1,1,y2, ti) pt = [xi,yi] curve.append(pt) curve.append([0,yi]) H = rc.RevolveCurve(curve,t,q,s, n=n, bcap=True,ecap=True) return H
def Ellipsoid(rx,ry,t,q,s,m=10,n=10): curve = [[0,0]] a,b = [0,0] for i in range(m): val = 1.0*i/(m-1) ti = mapto.MapTo(0,-pi/2., 1,pi/2., val) # pi = 180 degrees only half circle xi = a + rx*cos(ti) yi = b + ry*sin(ti) pt = [xi,yi] curve.append(pt) H = rc.RevolveCurve(curve,t,q,s, n=n, bcap=True,ecap=True) return H
def TableLeg(height,radius1,radius2,n=10,m=10): h = height r1 = radius1 r2 = radius2 curve = [] x0 = 0 for i in range(1,m-1): r = mapto.MapTo(0,r1,m-1,r2,i) xi = r yi = mapto.MapTo(0,0,m-1,h,i) pt = [xi,yi] curve.append(pt) yi = mapto.MapTo(0,0,m-1,h,.1) curve = [[0,yi]]+curve+[[0,height]] # Assume curve has symmetry y-axis x0 = curve[0][0] x_min = min(map(lambda pt: pt[0]-x0,curve)) x_max = max(map(lambda pt: pt[0]-x0,curve)) y_min = min(map(lambda pt: pt[1],curve)) y_max = max(map(lambda pt: pt[1],curve)) poly_wb = deepcopy(curve) pts = map(lambda pt: [0,pt[1],0], poly_wb) y_min = min(map(lambda pt: pt[1],poly_wb)) y_max = max(map(lambda pt: pt[1],poly_wb)) doc = g.Cn(n) cx,cy,cz = [0,0,0] r0 = 1. doc1 = rc.CreateCircleGeometry(doc,cx,cy,cz,r0) spath = [] path = [] pti = poly_wb[0] xi,yi = pti yi_last = yi dx = x_max-x_min dy = y_max-y_min epsilon = 1e-4 if abs(dx) > epsilon: aspect = 1.*dy/dx else: aspect = 1.*dx/dy for i in range(len(poly_wb)): pti = poly_wb[i] xi,yi = pti r = abs(xi - x0) dy = yi-yi_last epsilon = .1 if abs(dy) > epsilon: spath.append(r) path.append([yi,0,0]) yi_last = yi degrees = 90+180 axis = [0,1,0] q0 = aff.HH.rotation_quaternion(degrees,axis[0],axis[1],axis[2]) q = q0 t = [0,0,-height*.4] s = [1,1,1] C = aff.Center(path) pts = aff.Translate(path,-C[0],-C[1],-C[2],align=False) pts = aff.Rotate(pts,q,align=False) pts = aff.Scale(pts, s[0],s[1],s[2],align=False) pts = aff.Translate(pts,t[0],t[1],t[2],align=False) path = pts #path = [[0,0,0],[10,1,0],[20,4,0],[30,9,0]] H = ext.Extrusion0(doc1,path,spath) return H
def CoffeeCup0(n=30,m=20,r0=20.): flag_cup = True flag_handle = True H1 = {} H1['V'] = [] H1['E'] = [] H1['pts'] = [] H1['F'] = [] H1['N'] = [] H2 = {} H2['V'] = [] H2['E'] = [] H2['pts'] = [] H2['F'] = [] H2['N'] = [] if flag_cup: # polygon curve of surface of revolution # Create Cup. At present, its imperfect recreating # a cover to coffee cup. curve1a = [[406, 388], [441, 384], [469, 378], [489, 363], [506, 347], [518, 330], [520, 314], [522, 297], [525, 276], [528, 258], [530, 228], [528, 182], [528, 150], [527, 113], [527, 91], [532, 73], [540, 68]] curve1b = [[554, 70], [554, 86], [549, 108], [550, 136], [546, 181], [547, 214], [544, 249], [544, 268], [538, 281], [540, 288], [539, 300], [531, 312], [532, 329], [526, 350], [513, 362], [502, 378], [482, 393], [446, 406], [417, 409]] curve1 = curve1a + curve1b x0 = curve1[0][0] x_min = min(map(lambda pt: pt[0]-x0,curve1)) x_max = max(map(lambda pt: pt[0]-x0,curve1)) y_min = min(map(lambda pt: pt[1],curve1)) y_max = max(map(lambda pt: pt[1],curve1)) degrees = 0 axis = [0,1,0] q = aff.HH.rotation_quaternion(degrees,axis[0],axis[1],axis[2]) scale = 1. s = [scale,scale,scale] # the same scale as previous for caps t = [0,0,0] H1 = rc.RevolveCurve(curve1,t,q,s, n, bcap=False, ecap=False) if flag_handle: # Create Handle curve2 = [[203, 130], [189, 114], [165, 102], [149, 100], [132, 101], [116, 106], [106, 113], [107, 128], [112, 152], [118, 169], [127, 184], [138, 201], [149, 208], [165, 209], [186, 214], [207, 213]] # Assume curve has symmetry y-axis x0 = curve2[0][0] x_min = min(map(lambda pt: pt[0]-x0,curve2)) x_max = max(map(lambda pt: pt[0]-x0,curve2)) y_min = min(map(lambda pt: pt[1],curve2)) y_max = max(map(lambda pt: pt[1],curve2)) poly_wb = deepcopy(curve2) pts = map(lambda pt: [0,pt[1],0], poly_wb) y_min = min(map(lambda pt: pt[1],poly_wb)) y_max = max(map(lambda pt: pt[1],poly_wb)) doc = g.Cn(m) cx,cy,cz = [0,0,0] doc1 = rc.CreateCircleGeometry(doc,cx,cy,cz,r0) spath = [] path = [] pti = poly_wb[0] xi,yi = pti yi_last = yi dx = x_max-x_min dy = y_max-y_min for i in range(len(poly_wb)): pti = poly_wb[i] xi,yi = pti r = abs(xi - x0) dy = yi-yi_last epsilon = .1 if abs(dy) > epsilon: spath.append(1.) path.append([xi,yi,0]) degrees = 90+180 axis = [1,0,0] q0 = aff.HH.rotation_quaternion(degrees,axis[0],axis[1],axis[2]) q = q0 t = [-184,0,100] s = [1,1,1] C = aff.Center(path) pts = aff.Translate(path,-C[0],-C[1],-C[2],align=False) pts = aff.Rotate(pts,q,align=False) pts = aff.Scale(pts, s[0],s[1],s[2],align=False) pts = aff.Translate(pts,t[0],t[1],t[2],align=False) path = pts H2 = ext.Extrusion0(doc1,path,spath) H = ext.GraphUnionS(H1,H2) return H
pts = aff.Translate(pts,t[0],t[1],t[2],align=False) H0['pts'] = pts Gs = ext.Append(Gs,H0) G = ext.GraphUnionS(G,H0) # square table H1 = SquareTable1() Gs = ext.Append(Gs,H1) G = ext.GraphUnionS(G,H1) # N1 x N2 water bottles N1 = 1 N2 = 1 for j in range(N2): for i in range(N1): H2 = rc.WaterBottle(n=10) degrees = -90 axis = [0,1,0] q = aff.HH.rotation_quaternion(degrees,axis[0],axis[1],axis[2]) scale = 1. s = [scale,scale,scale] # the same scale as previous for caps r = 40. t0 = [N1*r,-N2*r,55.] if j%2 == 0: t = [t0[0]+r*i,t0[1]+r*j,t0[2]] else: t = [t0[0]+r*i + r*0.5,t0[1]+r*j,t0[2]] pts = H2['pts'] q = aff.HH.rotation_quaternion(degrees,axis[0],axis[1],axis[2]) C = aff.Center(pts)
Gs = [] Puma560.P.pt = [0, 0, 0] G1 = Puma560.P.Graph() #goal = [-140.772457400456574, 406.0018009385133, 139.89926879829596] #goal = [-300,300,300] goal = [-600, 300, 600] r = 20. t = deepcopy(goal) degrees = 90 axis = [0, 0, 1] q = aff.HH.rotation_quaternion(degrees, axis[0], axis[1], axis[2]) scale = 3. s = [scale, scale, scale] # the same scale as previous for caps H1 = rc.WaterBottle(n=30) pts = H1['pts'] C = aff.Center(pts) pts = aff.Translate(pts, -C[0], -C[1], -C[2], align=False) pts = aff.Rotate(pts, q, align=False) pts = aff.Scale(pts, s[0], s[1], s[2], align=False) pts = aff.Translate(pts, t[0], t[1], t[2], align=False) H1['pts'] = pts Gs = ext.Append(Gs, H1) G = ext.GraphUnionS(G, H1) N = 10 degrees = 0 axis = [0, 1, 0] qp = aff.HH.rotation_quaternion(degrees, axis[0], axis[1], axis[2]) scale = 1.