示例#1
0
    def quotes(self):

        QtGui.QApplication.setOverrideCursor(QtGui.QCursor(QtCore.Qt.WaitCursor))

        conn = sqlite3.connect('HSAsserts.db')
        cursor = conn.cursor()        
        stocks=''                 #select c.Code,TradeMarket from b_code c where c.Enable=1 and c.TradeMarket notnull 
        for row in cursor.execute("select c.Code,TradeMarket from b_code c,v_assets a where c.Enable=1 and c.TradeMarket notnull and a.code= c.code and a.sumvollum !=0 "):
            if( stocks == ''):
                stocks = row[1].lower() + row[0]
            else:
                stocks = stocks + ',' + row[1].lower()+row[0]

        qd = SinaQuote.GetQuote( stocks )
        #print(qd)
        sql = "INSERT OR REPLACE INTO D_LatestQuote VALUES (?, ?, ?)"
        for i in range( len(qd) ):
            CValue = qd.iloc[i]['C']
            if CValue == 0:
                CValue = qd.iloc[i]['PC']
            sqltuple = (qd.iloc[i]['code'][2:] , qd.iloc[i]['datetime'].strftime('%Y-%m-%d %H:%M:%S'), str(CValue) )
            cursor.execute(sql,sqltuple)
        conn.commit()
        conn.close() 
        QtGui.QApplication.restoreOverrideCursor()
        QtGui.QMessageBox.information(self,self.tr('Get Quotes'), self.tr('[{0}] records updated.'.format(i)) , QtGui.QMessageBox.Ok)
示例#2
0
	def __init__(self, date, code, name, number, price, op_type):
		self.stock_code = code
		self.stock_name = name
		self.stock_number = float(number)
		if price == 0:
			price = SinaQuote.getLastClosePrice(code, date)
		self.position_flow = [ (date, number, price, op_type) ]
示例#3
0
	def calculate_profit(self, last_date, is_rongquan=False):

		stock_count = 0
		stock_cost = 0
		profit_total = 0
		profit_list = []
		for (date, number, price, op_type) in self.position_flow:
			profit = 0
			if (number>0 and is_rongquan==False) or (number<0 and is_rongquan==True):
				if stock_cost == 0:
					stock_cost = price
				else:
					total = stock_count + number
					if total == 0:
						print is_rongquan
						for p in self.position_flow:
							print p
						print '!!! total stock number is 0, date %s stock_code %s stock_name %s number %d' % (date, self.stock_code, self.stock_name, number)
					stock_cost = float(stock_count*stock_cost + number*price) / (stock_count + number)
				stock_count += number
			elif (number<0 and is_rongquan==False) or (number>0 and is_rongquan==True):
				profit = (price - stock_cost)*(-number)
				profit_total += profit
				stock_count += number
			profit_list.append( (date, self.stock_code, self.stock_name, number, price, stock_count, stock_cost, profit, profit_total, op_type) )
		if stock_count != 0:
			last_price = SinaQuote.getLastClosePrice(self.stock_code, last_date)
			profit = stock_count * ( last_price - stock_cost)
			profit_total += profit
			profit_list.append( (last_date, self.stock_code, self.stock_name, 0, last_price, stock_count, stock_cost, profit, profit_total, 3) ) # 操作类型3是持仓
		columns = [u'日期', u'代码', u'名称', u'数量', u'价格', u'当前总持仓', u'当前成本', u'本次盈亏', u'总盈亏', u'操作类型']
		return (profit_total, profit_list, columns)
示例#4
0
	def stock_in(self, date, stock_code, stock_name, stock_number, price, actual_amount):  # 担保划入
		#print 'stock in:', stock_name,stock_number
		if math.isnan(price) or price == 0:
			price = SinaQuote.getLastClosePrice(stock_code, date)
		if math.isnan(actual_amount) or actual_amount == 0:
			actual_amount = stock_number * price
		self.bank_in_money(actual_amount)
		self.buy_stock(date, stock_code, stock_name, stock_number, price, actual_amount)
示例#5
0
	def getValue(self, date):
		closePrice = SinaQuote.getLastClosePrice(self.stock_code, date)
		value = 0;
		if closePrice == -1:
			print "!!!error: getClosePrice %s %s error" % (self.stock_code, date)
		else:
			value = closePrice * self.stock_number
		return value
示例#6
0
def add_stock_code_prefix(df, cname):
	df = df.reset_index()
	for i,row in df.iterrows():
		stock_name = SinaQuote.get_sh_sz(row[cname])
		if stock_name != u'':
			df.loc[i, cname] = stock_name
	del df['index']
	return df
示例#7
0
	def stock_out(self, date, stock_code, stock_name, stock_number, price, actual_amount):
		#print 'stock out:', stock_name,stock_number
		if price == 0:
			price = SinaQuote.getLastClosePrice(stock_code, date)
		if actual_amount == 0:
			actual_amount = stock_number * price
		self.sell_stock(date, stock_code, stock_name, stock_number, price, actual_amount)
		self.calculate_nv()  # !!! need this because after sell stock nv will change !!!
		self.bank_out_money(actual_amount)
示例#8
0
	def get_position_dataframe(self, date):
		position_list = []
		for stock_code, s in self.stock.items():
			if s.stock_number != 0:
				price = SinaQuote.getLastClosePrice(stock_code, date)
				position_list.append([date, s.stock_code, s.stock_name, s.stock_number, price, s.stock_number*price])
		df = pd.DataFrame()
		if len(position_list) > 0:
			df = pd.DataFrame(data=position_list, columns=[u'日期', u'代码', u'名称', u'数量', u'价格', u'市值'])
		return df
示例#9
0
    def getNAV(self):
        conn = sqlite3.connect('HSAsserts.db')
        cursor = conn.cursor() 
        navs = []
                                    #select c.Code,TradeMarket from b_code c,v_assets a where c.Enable=1 and c.NetvalueMarket ='OF' and a.code= c.code and a.sumvollum !=0  
        cursor.execute("select c.Code from b_code c where c.Enable=1 and c.NetvalueMarket ='OF'")
        codes = cursor.fetchall() # select c.Code from b_code c where c.Enable=1 and c.NetvalueMarket ='OF'
        progress = QtGui.QProgressDialog("Get Navs...", "Abort", 0, len(codes), self)
        progress.setWindowTitle('PortfoliMan')
        progress.setWindowModality(QtCore.Qt.WindowModal)
        failedCodes=[]
        for r in range(len(codes)):              
            fundCode = codes[r][0]
            nav = SinaQuote.GetNav(fundCode)
            if nav != None :
                navs.append( nav )
            else:
                nav = SinaQuote.GetNav(fundCode)   #try again
                if nav != None :
                    navs.append( nav )
                else:
                    failedCodes.append(fundCode)   #failed again         
            progress.setValue(r)
            QtCore.QCoreApplication.processEvents()
            import time
            time.sleep(0.5)
            if progress.wasCanceled() :
                return
        progress.setValue(len(codes)) 

        sql = "INSERT OR REPLACE INTO D_LatestNetvalue VALUES (?, ?, ?, ?)"
        cursor.executemany(sql,navs)
        conn.commit()
        QtGui.QMessageBox.information(self,self.tr('Get Navs'), self.tr('[{0}/{1}] records updated. Failed codes {2}'.format(len(navs),len(codes),failedCodes)) , QtGui.QMessageBox.Ok)
        conn.close()          
        with open('D_LatestNetvalue.csv', 'w', newline='') as csvfile:
            fieldnames = ['Code', 'Tdate', 'Netvalue','SumNetvalue']
            writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
            writer.writerow( dict( Code ='D_LatestNetvalue', Tdate='',Netvalue='',SumNetvalue='' ) )
            writer.writeheader()
            for nav in navs:
                writer.writerow(dict( Code =nav[0], Tdate=nav[1],Netvalue=nav[2],SumNetvalue=nav[3] ))
示例#10
0
def get_value(date):
	total_value = 0
	for line in open(argv[1]):
		r = line.split(',')
		#print r[1][4:-1]
		stock_number = int(r[6])
		stock_cd = r[1][4:-1]
		last_price = SinaQuote.getLastClosePrice(stock_cd, date)
		print stock_cd, stock_number, last_price
		value = stock_number * last_price 
		total_value += value
	return total_value
示例#11
0
    def addFund(self):

        secID = self.cbFund.itemData(self.cbFund.currentIndex())
        if secID in self._funds:
            return
        npNav = SinaQuote.GetHNav(secID)
        #stsdate = pd.to_datetime( self.sdate.date().toPython() )
        #etsdate =  pd.to_datetime( self.edate.date().toPython() )
        stsdate = self.sdate.text()
        etsdate = self.edate.text()
        npNav = npNav[npNav.fbrq >= stsdate]
        npNav = npNav[npNav.fbrq <= etsdate]

        npNav.adjNav = npNav.adjNav / npNav.adjNav[0] * 100

        self.ax1.plot(pd.to_datetime(npNav.fbrq),
                      npNav.adjNav,
                      label=self.cbFund.currentText())

        leg = self.ax1.legend(loc=0, fontsize=10, frameon=False)
        leg.get_frame().set_facecolor((.94, .94, .94))
        import matplotlib.dates
        import datetime
        xlim = matplotlib.dates.date2num([
            self.sdate.date().toPython(),
            self.edate.date().toPython() + datetime.timedelta(days=2)
        ])
        if np.min(npNav.adjNav) - 5.0 < self._ylim[0]:
            self._ylim[0] = np.min(npNav.adjNav) - 5.0
        if np.max(npNav.adjNav) + 5.0 > self._ylim[1]:
            self._ylim[1] = np.max(npNav.adjNav) + 5.0
        ysticks = [100]
        ys = 110
        while ys < self._ylim[1]:
            ysticks.append(ys)
            ys = ys * 1.1
        ys = 90
        while ys > self._ylim[0]:
            ysticks.append(ys)
            ys = ys * 0.9
        ysticks.sort()
        self.ax1.set_yscale(u'log')
        self.ax1.set_ylim(self._ylim[0], self._ylim[1])
        self.ax1.yaxis.set_ticks(ysticks)
        self.ax1.yaxis.set_major_formatter(mticker.FormatStrFormatter('%.1f'))
        self.ax1.yaxis.grid(True, color='0.6', linestyle='-', linewidth=0.5)
        self.ax1.set_xlim(xlim[0], xlim[1])

        #self.canvas.fig.autofmt_xdate()
        self.canvas.draw_idle()
        self._funds.append(secID)
示例#12
0
文件: test.py 项目: imagebody/ulopark
def process_5447231412():
	df = normalize.parse_file(u'all.xlsx')
	for i,row in df.iterrows():
		operation = row[u'操作']
		stock_name = row[u'证券名称']
		stock_code = row[u'证券代码']
		if stock_name == u'申购款' and operation in [u'申', u'卖']:
			stock_name = SinaQuote.getNewStockName(stock_code)
			if stock_name == '':
				print 'error, new stock name not found:%s' % stock_code
			df.loc[i,u'证券名称'] = stock_name
			if operation == u'申':
				df.loc[i,u'操作'] = u'申购扣款'
			else:
				df.loc[i,u'操作'] = u'申购还款'

	df.to_excel(u'调整后.xls',encoding='gbk')
示例#13
0
文件: test.py 项目: imagebody/ulopark
def process_1488061441():
	df = normalize.parse_file(u'卓建华2014交割单1.201503050951.xlsx')
	for i,row in df.iterrows():
		operation = row[u'委托类别']
		bianhao = row[u'成交编号']
		stock_name = row[u'证券名称']
		stock_code = row[u'证券代码']
		if operation == u'直接还款' and bianhao == u'申购扣款':
			df.loc[i,u'委托类别'] = u'申购扣款'
		elif stock_name == u'申购款' and operation == u'直接还款':
			stock_name = SinaQuote.getNewStockName(stock_code)
			if stock_name == '':
				print 'error, new stock name not found:%s' % stock_code

			df.loc[i,u'证券名称'] = stock_name
			df.loc[i,u'委托类别'] = u'申购扣款'

	df.to_excel(u'调整后.xls',encoding='gbk')
示例#14
0
def analyze(file_name, merge_stock_operation_detail=False):
	account_type = re.sub('_normalized\.xls', '', file_name)
	flow_records = pd.read_excel(file_name, encoding='gbk')

	SinaQuote.reset()
	broker_processor = globals()['normal']	
	init_account = Account(None)
	for i, row in flow_records.iterrows():
		broker_processor.handle_row(row, init_account, i==0)

	init_account.calculate_init_cash_if_no_remain_amount(flow_records)
	init_account.print_position()
	init_account.print_init_position()
	init_account_value = init_account.calculate_init_position_value(20140101)
	init_date = int(init_account.get_init_date())
	print init_date
	print init_account_value
	print init_account.init_cash

	account = Account( init_account )
	account_status_data = []
	#print "%d: %s" % (1, account.report_init())
	process_day = datetime(2014,1,1)
	init_day = datetime(init_date/10000, init_date%10000/100, init_date%100)

	while process_day < init_day:
		account.set_date(int(process_day.strftime('%Y%m%d')))
		account.calculate_nv()
		print account.get_status_data()
		account_status_data.append(account.get_status_data())
		process_day = compute.next_bday(process_day)

	for i, row in flow_records.iterrows():
		d = broker_processor.get_row_date(row)
		row_date = datetime(d/10000, d%10000/100, d%100)
		while row_date > process_day:
			account.calculate_nv(int(process_day.strftime('%Y%m%d')))
			print account.get_status_data()
			#if process_day == datetime(2014,2,24) or process_day == datetime(2014,2,25):
			#	account.print_position()
			#if int(process_day.strftime('%Y%m%d')) == 20140509 or int(process_day.strftime('%Y%m%d')) == 20140512:
			#account.report_position_detail()
			account_status_data.append(account.get_status_data())
			process_day = compute.next_bday(process_day)
			account.set_date(int(process_day.strftime('%Y%m%d')))
		broker_processor.handle_row(row, account, i==0)
		account.calculate_nv() # 每个操作必须重新计算净值
		#print account.get_status_data(), d, row['operation'], row['actual_amount'], row['stock_code'], row['stock_name']
	while process_day <= datetime(2014,12,31):
			account.calculate_nv(int(process_day.strftime('%Y%m%d')))
			print account.get_status_data()
			account_status_data.append(account.get_status_data())
			process_day = compute.next_bday(process_day)
			account.set_date(int(process_day.strftime('%Y%m%d')))
		
	df_nv_history = pd.DataFrame(data=account_status_data, columns=account.get_status_columns())
	(uid, name) = get_uid_name()
	out_file_name = uid + '_' + name + '_' + account_type + u'_分析结果' + datetime.now().strftime('%Y%m%d%H%M%S') + '.xls'
	if merge_stock_operation_detail:
		out_file_name = u'/Users/jiangbin/百度云同步盘/work/for_renjie/'+out_file_name
	(profit_sum_list, profit_detail_df_list) = account.get_profit_detail(20141231)
	#df_profit_detail = pd.DataFrame(data=profit_list, columns=profit_columns)
	df_profit_sum = pd.DataFrame(data=profit_sum_list, columns=[u'代码', u'名称', u'累计赢利'])
	df_init_position = init_account.get_init_position_dataframe()
	df_final_position = account.get_position_dataframe(20141231)
	#account.stock_position.get_detail_stock_flow(20141231)
	buy_sell_count = account.buy_sell_count

	df_overview = pd.DataFrame()
	with pd.ExcelWriter(out_file_name) as writer:
		df_overview = print_result_overview(account_type, df_nv_history, buy_sell_count, writer)
		df_nv_history.to_excel(writer, sheet_name=u'净值历史', encoding='gbk')
		df_profit_sum = add_stock_code_prefix(df_profit_sum, u'代码')
		df_profit_sum.to_excel(writer, sheet_name=u'个股赢利汇总', encoding='gbk')
		write_profit_detail(writer, profit_detail_df_list, merge_stock_operation_detail)
		df_init_position[u'类型'] = u'期初持仓'
		df_final_position[u'类型'] = u'期末持仓'
		df_position_all = pd.concat([df_init_position, df_final_position])
		df_position_all = add_stock_code_prefix(df_position_all, u'代码')
		change_init_date(df_position_all)
		df_position_all.to_excel(writer, sheet_name=u'期初期末持仓', encoding='gbk')

		
	return df_overview
示例#15
0
	def stock_transfer(self, date, stock_code, stock_name, stock_number):  # 协议转让
		self.save_stock_code_name(stock_code, stock_name)
		price = SinaQuote.getLastClosePrice(stock_code, date)
		self.stock_position.minus(date, stock_code, stock_name, stock_number, price, 7) # 操作类型7是转出
		# 现金不增加,份额减少
		self.fund_units -= float(stock_number * price) / self.net_value
示例#16
0
#coding=utf-8
# tpomcuvnmu 
# 501038 166024 501049 (即将上市交易) 封闭2年的创新型杠杆封基163417
import pandas as pd
import numpy as np
import xlwings as xw
import SinaQuote

wb = xw.Book('Funds.xlsx')
sht = wb.sheets['FundPerf']

for i in range(2,1000):    
    code=sht.range('B{0}'.format(i)).value
    print(code)
    if code != None:
        npNav = SinaQuote.GetHNav( code[2:] )
        if len(npNav) > 1:
            sht.range((i,4)).value = npNav.fbrq[-1]
            sht.range((i,5)).value = npNav.adjNav[-1] / npNav.adjNav[-2] - 1.0
        for j in range(6,20):
            bdate = sht.range((1,j)).value
            if bdate != None:
                begNav = npNav[ npNav.fbrq ==bdate ]
                if len(begNav) > 0:
                    sht.range((i,j)).value = npNav.adjNav[-1] / begNav.adjNav[0] - 1.0
                pass
            else:
                break
    else:
        break    
        
示例#17
0
def pre_process(df):
	change_column_names(df)
	merge_zhaiyao_and_operation(df)
	#df = df.apply(remove_space, axis=0)  # only for 2089526857张洁,

	for i, row in df.iterrows():
		if row[u'operation'] in [u'基金申购拨出', u'基金赎回拨入'] and \
		type(row[u'stock_code']) is unicode and row[u'stock_code'].startswith(u'AA0007'):
			df.loc[i, u'stock_number'] = abs(row[u'actual_amount'])

		if row[u'operation'] in [u'基金申购', u'基金赎回']:
			if type(row[u'stock_code']) is float and \
			math.isnan(row[u'stock_code']): # no stock code
				df.loc[i, u'operation'] = u'基金其他'
		
		if row[u'operation'] == u'基金分拆':
			if row[u'stock_name'].endswith((u'A', u'B')):
				df.loc[i, u'operation'] = u'分级基金分拆'
			else:
				df.loc[i, u'operation'] = u'基金分拆-母鸡'

		if row[u'operation'] in [u'托管转入', u'托管转出']:
			#print row[u'stock_code']
			if row[u'stock_code'] in [u'163113', u'165521']:
				df.loc[i, u'operation'] = u'分级基金-母基操作'
			#print row[u'operation'], row[u'stock_name'], type(row[u'stock_name'])
			stock_name = SinaQuote.getNewStockName(unicode(row[u'stock_name']))
			if stock_name != '':
				df.loc[i, u'operation'] = u'新股相关'

		if row[u'stock_code'] == u'799999':
			df.loc[i, u'operation'] = u'登记指定相关'

		if type(row[u'operation']) in [float, int] or type(row[u'stock_name']) in [int]:
			print row[u'operation'],row
		if row[u'operation'].startswith(u'托管转入') and type(row[u'stock_name']) is unicode and row[u'stock_name'].endswith((u'A', u'B')):
			df.loc[i, u'operation'] = u'分级基金分拆'
		
		if row[u'operation'] == u'托管转入' and type(row[u'stock_name']) is unicode and row[u'stock_name'].startswith(u'DR'):
			df.loc[i, u'operation'] = u'红股入帐'

		if u'成交编号' in row.index:
			if row[u'operation'] == u'其他' and row[u'成交编号'] == u'股息差别税':
				df.loc[i, u'operation'] = u'股息差别税'
			if row[u'operation'] == u'转托' and row[u'成交编号'] == u'转托管转入':
				df.loc[i, u'operation'] = u'指定'
			if row[u'operation'] == u'托管转入' and row[u'成交编号'] == u'上市流通':
				df.loc[i, u'operation'] = u'新股相关'
			if row[u'operation'] == u'托管转出' and row[u'成交编号'] == u'上市转出':
				df.loc[i, u'operation'] = u'新股相关'

		if 'beizhu' in row.index:
			if row[u'operation'] == u'托管转出' and row['beizhu'] == u'托管转出' \
			and (str(int(row[u'stock_code'])) not in [u'163113', u'165521']):
				print row[u'stock_code'], row[u'operation'], row[u'beizhu']
				df.loc[i, u'operation'] = u'担保转出'

		if row['operation'] == u'撤指' and row['stock_number'] == 0:
			df.loc[i, u'operation'] = u'转存管转出'		

		# handle special case 
		if row[u'stock_code'] == 82046:
			df.loc[i, u'stock_code'] = 2046	

	out_file = '普通账户.xls'
	for o in df['operation']:
		if o in [u'融资利息扣款', u'融资买入', u'融资利息']:
			out_file = '融资融券账户.xls'

	return ( df.apply(process_operation, axis=1), out_file )
示例#18
0
	def buy_new_stock(self, date, stock_code, stock_name, stock_number, price, actual_amount):
		cd = SinaQuote.getNewStockCode(stock_code)
		if cd != '':
			stock_code = cd
		self.buy_stock(date, stock_code, stock_name, stock_number, price, actual_amount)
		self.buy_sell_count += 1
示例#19
0
def handle_row(row, account, is_first_row):
	#print row
	deal_date = get_row_date(row)
	deal_time = row[u'deal_time']
	stock_code = norm_stock_code(row[u'stock_code'])
	if stock_code == '000nan' and row['operation'] in ['buy','sell','earn stock']:
		print row
	stock_name = row[u'stock_name']
	operation = row[u'operation']
	stock_price = row[u'stock_price']
	if stock_price != u'---':
		stock_price = float(stock_price)
	else:
		stock_price = 0
	stock_number = row[u'stock_number']  # number should always be positive
	if stock_number != u'---':
		#print stock_number, type(stock_number)
		stock_number = abs(float(stock_number))
	else:
		stock_number = 0

	deal_amount = 0
	if 'deal_amount' in row.index:
		deal_amount = float(row[u'deal_amount']) # optional
	elif operation not in ['buy (bond repurchase)', 'sell (bond repurchase)']:
		deal_amount = stock_number * stock_price

	actual_amount = 0
	if 'actual_amount' in row.index:
		if not math.isnan(row[u'actual_amount']):
			actual_amount = float(row[u'actual_amount'])
	else:
		actual_amount = deal_amount

	remain_amount = 0
	if 'remain_amount' in row.index:
		remain_amount = float(row[u'remain_amount'])
	else:
		account.has_remain_amount_column = False


	#print deal_date, deal_time, stock_code, stock_name, operation, stock_price, stock_number, actual_amount, remain_amount

	if is_first_row:
		init_cash = remain_amount-actual_amount
		if row['operation'] == 'stock in':  # 如果第一笔操作是担保转入,直接用剩余金额,不能减去发生金额
			init_cash = remain_amount
		account.set_init_cash(init_cash)
		account.set_init_date(deal_date)
		print 'first row, init_cash %f, init_date %s' % (init_cash, deal_date)

	account.set_date(deal_date)

	if 'remain_stock' in row.index:
		remain_stock = row[u'remain_stock']  # number should always be positive
		if remain_stock != u'---':
			#print stock_number, type(stock_number)
			remain_stock = abs(float(remain_stock))
		else:
			remain_stock = 0
		process_init_position(account, remain_stock, stock_number, stock_code, stock_name, operation)

	if operation == 'buy':
		account.buy_stock(deal_date, stock_code, stock_name, stock_number, stock_price, actual_amount)
	elif operation == 'buy (new stock)':
		account.buy_new_stock(deal_date, stock_code, stock_name, stock_number, stock_price, actual_amount)
	elif operation == 'buy (bond repurchase)':
		#print '===========',row
		SinaQuote.setGC001Price(stock_code, stock_number, deal_amount, actual_amount)
		stock_price = SinaQuote.getGC001Price(stock_code)
		#print stock_code,stock_number,stock_price
		account.buy_stock(deal_date, stock_code, stock_name, stock_number, stock_price, actual_amount)		
	elif operation == 'sell':
		account.sell_stock(deal_date, stock_code, stock_name, stock_number, stock_price, actual_amount)
	elif operation == 'sell (bond repurchase)':
		#print '===========',row
		SinaQuote.setGC001Price(stock_code, stock_number, deal_amount, actual_amount)
		stock_price = SinaQuote.getGC001Price(stock_code)
		#print stock_code,stock_number,stock_price
		account.sell_stock(deal_date, stock_code, stock_name, stock_number, stock_price, actual_amount)
	
	elif operation == 'short':
		account.short_stock(deal_date, stock_code, stock_name, stock_number, stock_price, actual_amount)
	elif operation == 'cover':
		account.cover_stock(deal_date, stock_code, stock_name, stock_number, stock_price, actual_amount)
	
	elif operation == 'direct return':
		account.direct_return(deal_date, stock_code, stock_name, stock_number, stock_price)
	elif operation == 'stock in':
		account.stock_in(deal_date, stock_code, stock_name, stock_number, stock_price, actual_amount)
	elif operation == 'stock out':
		account.stock_out(deal_date, stock_code, stock_name, stock_number, stock_price, actual_amount)

	elif operation == 'fenji fund split':
		stock_price = SinaQuote.getLastClosePrice(stock_code, deal_date)
		actual_amount = float(stock_price * stock_number)
		account.stock_in(deal_date, stock_code, stock_name, stock_number, stock_price, actual_amount)
	elif operation in ['bank in money', 'bank out money', 'bank transfer']:
		account.bank_transfer(actual_amount)
	elif operation == 'borrow cash':
		account.borrow_cash(actual_amount)
	elif operation == 'return cash':
		account.return_cash(actual_amount)
	elif operation == 'pay interest':
		account.pay_interest(actual_amount)
	elif operation == 'pay tax':
		account.pay_tax(actual_amount)	
	elif operation == 'earn interest':
		account.earn_interest(actual_amount)
	elif operation == 'earn stock':
		account.earn_stock(deal_date, stock_code, stock_name, stock_number)
	elif operation == 'earn stock interest':
		if stock_number != 0 and actual_amount == 0:
			account.earn_stock(deal_date, stock_code, stock_name, stock_number)
		elif actual_amount != 0 and stock_number == 0:
			account.earn_interest(actual_amount)
		else:
			print '!!!! error earn stock interest, stock_number %f deal_amount %f' % (stock_number, actual_amount)
	elif operation == 'init position':
		account.add_init_position(stock_code, stock_name, stock_number)
	elif operation == 'init rongquan position':
		account.add_init_rongquan_position(stock_code, stock_name, stock_number)
	elif operation.startswith('todo:'):
		print '==== todo: row %s' % row
	elif operation.startswith('pass:'******'!!!! unknown operation %s row %s' % (operation, row)		
示例#20
0
import SinaQuote
import fundEM
import time

wb = xw.Book(u'D:\\yun\\百度云\\FinExcels\\Funds.xlsm')
sht = wb.sheets['Nav']

src = 0  #0  4

for i in range(3, 1000):
    code = sht.range('A{0}'.format(i)).value

    if code != None:
        print(code)
        if src == 0:
            tpNav = SinaQuote.GetNav(code[2:])
        else:
            if i % 3 == 1:
                time.sleep(0.5)
            tpNav = fundEM.GetNav(code[2:])
            sht.range((i, 6 + src)).value = tpNav[4]
        if tpNav != None:
            sht.range((i, 3 + src)).value = tpNav[1]
            sht.range((i, 4 + src)).value = tpNav[2]
            sht.range((i, 5 + src)).value = tpNav[3]

    else:
        break

#wb.save()
#wb.close()
示例#21
0
def parse_operation(i, row, df):
	deal_date = row[u'成交日期']
	deal_time = row[u'成交时间']
	deal_mark = row[u'买卖标志']
	actual_amount = row[u'发生金额']
	remain_amount = row[u'剩余金额']
	zhaiyao = row[u'摘要']

	if re.match(match_borrow_cash, zhaiyao):
		df.loc[i, u'买卖标志'] = u'融资借款'
	elif re.match(match_interest_in, zhaiyao):
		df.loc[i, u'买卖标志'] = u'结息入账'
	elif re.search(search_bank_in_money, zhaiyao):
		df.loc[i, u'买卖标志'] = u'银行转入'
	elif re.search(search_bank_out_money, zhaiyao):
		df.loc[i, u'买卖标志'] = u'银行转出'
	elif re.match(match_hongli, zhaiyao) or re.match(match_hongli1, zhaiyao) or re.search(search_shenshu, zhaiyao):
		df.loc[i, u'买卖标志'] = u'红利'
	elif re.search(search_tax, zhaiyao):
		df.loc[i, u'买卖标志'] = u'股息差别税'
	elif re.match(match_rzrq_in, zhaiyao):
		result = re.match(match_rzrq_in, zhaiyao)
		operation = result.group(2)
		stock_name = result.group(3)
		stock_code = result.group(4)
		stock_number = float(result.group(5))
		stock_price = float(result.group(6))
		df.loc[i, u'买卖标志'] = operation
		df.loc[i, u'证券代码'] = stock_code
		df.loc[i, u'证券名称'] = stock_name
		df.loc[i, u'成交价格'] = stock_price
		df.loc[i, u'成交数量'] = stock_number
		if operation not in [u'融资买入', u'信用买入', u'卖券还款', u'信用卖出', u'融券卖出', u'买券还券']:
			print '!!!error operation %s row:\n%s' % (operation, row)

	elif re.match(match_new_stock, zhaiyao):
		result = re.match(match_new_stock, zhaiyao)
		#print result.groups()
		operation = result.group(2)
		stock_code = result.group(4)
		stock_number = float(result.group(5))
		stock_price = float(result.group(6))
		stock_name = SinaQuote.getNewStockName(stock_code)
		df.loc[i, u'买卖标志'] = operation
		df.loc[i, u'证券代码'] = stock_code
		df.loc[i, u'证券名称'] = stock_name
		df.loc[i, u'成交价格'] = stock_price
		df.loc[i, u'成交数量'] = stock_number		
		if operation not in [u'申购扣款', u'申购还款', u'申购中签款']:
			print '!!!error operation %s row:\n%s' % (operation, row)

	elif re.match(match_rzrq_out, zhaiyao):
		result = re.match(match_rzrq_out, zhaiyao)
		operation = result.group(1)
		operation1 = result.group(3)
		stock_name = result.group(4)
		stock_code = result.group(5)
		stock_number = float(result.group(6))
		stock_price = float(result.group(7))
		df.loc[i, u'买卖标志'] = operation
		df.loc[i, u'证券代码'] = stock_code
		df.loc[i, u'证券名称'] = stock_name
		df.loc[i, u'成交价格'] = stock_price
		df.loc[i, u'成交数量'] = stock_number		
		#print 'ou' + operation + stock_name + stock_code + stock_number + stock_price
		if operation not in [u'卖券偿还本金', u'卖出偿还本金', u'卖券偿还融资利息', u'卖券偿还融券费用', u'卖出偿还利息', u'偿还融资其它费用']:
			print '!!!error operation %s row:\n%s' % (operation, row)
	elif re.match(match_rzrq_return, zhaiyao):
		result = re.match(match_rzrq_return, zhaiyao)
		operation = result.group(1)
		df.loc[i, u'买卖标志'] = operation
		if operation not in [u'偿还本金', u'偿还融资利息', u'偿还融券费用']:
			print '!!!error operation %s row:\n%s' % (operation, row)	
	elif re.match(match_rzrq_pay_interest, zhaiyao):
		df.loc[i, u'买卖标志'] = u'偿还融资利息'
	else:
		print '!!!! unknown row %s' % row