示例#1
0
def getType():
   tests = []
   tests.append(["anata ha BAKA desu.", "r"])
   tests.append(["あなたはバカです。", "k"])
   tests.append([["a", "na", "ta", "ha", "ba", "ka", "de", "su", "."], "i"])
   for x in tests:
      result = JapaneseTools.Conversion.getType(x[0])
      if result != x[1]: return Tester.Result(False, "Failed on " + str(x))
   
   return Tester.Result(True, "All Types were properly detected")
示例#2
0
def ktor():
   tests = collections.OrderedDict()
   tests["ぼく"] = "boku"
   tests["あたい"] = "atai"
   tests["しんぶん"] = "shin'bun'"
   tests["しんおさか"] = "shin'osaka"
   tests["ネイセン"] = "NEISEN'"
   tests["てゐ"] = "tewi"
   tests["ハニュー"] = "HANYU-"
   for x in tests:
      result = JapaneseTools.Conversion.convert(x, sourcetype="k", targettype="r")
      if result != tests[x]: return Tester.Result(False, "Failed on '" + x + "'")
   return Tester.Result(True, "All Kana to Romaji worked properly")
示例#3
0
def rtok():
   tests = collections.OrderedDict()
   tests["boku"] = "ぼく"
   tests["atai"] = "あたい"
   tests["shinbun"] = "しんぶん"
   tests["shin'osaka"] = "しんおさか"
   tests["NEISEN"] = "ネイセン"
   tests["tewi"] = "てゐ"
   tests["HANYU-"] = "ハニュー"
   for x in tests:
      result = JapaneseTools.Conversion.convert(x, sourcetype="r", targettype="k")
      if result != tests[x]: return Tester.Result(False, "Failed on '" + x + "'") 
   return Tester.Result(True, "All Romaji to Kana worked properly")
示例#4
0
def learn():
    # splits()
    print("Done Splitting...")

    tester = Tester()
    test_set = tester.getTestSet()

    print("Finished tester Stuff")

    answers = []

    reader = FileReader("training.txt")
    X = reader.read_file()

    print("Starting SVD..")

    svd = TruncatedSVD(n_components=10, n_iter=10, random_state=42)
    dense = svd.fit_transform(X)

    print("Done with SVD, starting K Means...")

    km = KMeans(n_clusters=100)
    ans = km.fit_predict(dense)

    print("Done with K Means...")

    inverseAns = {cluster: [] for cluster in range(100)}
    # centroids = svd.inverse_transform(km.cluster_centers_)
    for trainingProdKey, trainingProdIndex in reader.product.items():
        inverseAns[ans[trainingProdIndex]].append(trainingProdKey)

    print('Done inverting clusters')

    i = 0
    for prod in test_set:
        # print("Inside Loop")
        answers.append(predict(prod, reader.product, ans, inverseAns))

        if i % (len(test_set) // 100) == 0:
            print("\rDone with {}% of predicting...".format(i / len(test_set)),
                  end='')
        i = i + 1

    print()
    print(tester.checkAnswers(answers))
示例#5
0
def gen_medium(iSeq1_len, sSeq1_len):
    return Tester.MediumData(smallData=gen_small(iSeq1_len),
                             n3=random.randint(1, 1000),
                             n4=random.randint(1, 1000),
                             d1=random.uniform(1, 100.0),
                             d2=random.uniform(1, 100.0),
                             s2=random_string(10),
                             b2=random_bool(),
                             sSeq1=random_s_list(sSeq1_len))
示例#6
0
    def runTests(self):
        tester = Tester.Tester(self.stop, self.color, self.verbose)
        tester.offline = self.offline
        try:
            for test in self.test.getTests():
                test.run(tester)
        except KeyboardInterrupt:
            sys.stderr.write('\n%s\n' % ('=' * 72))
            sys.stderr.write('\nTesting interrupted\n')

        if self.report:
            tester.report()
        return
示例#7
0
        def process_input():
            ticker = e1.get()
            start_date = e2.get()
            end_date = e3.get()
            candle_interval = e4.get()
            ma_period = int(e5.get())
            path = e6.get()

            df = tr.MAIN_Tester(ticker, start_date, end_date, candle_interval,
                                ma_period).run()

            writer = pd.ExcelWriter(path)
            sheet_name = ticker + " " + start_date + " " + end_date
            df.to_excel(writer, sheet_name)
            writer.save()
示例#8
0
def configure(logging=None, noLogEvents=None):
    # """Sets the global event manager's logging options."""
    # if g_eventManager:
    # g_eventManager.setLogging(logging)
    # g_eventManager.setNoLogEvents(noLogEvents)
    # else:
    # BugUtil.error("BugEventManager - BugEventManager not setup before configure()")
    # K-Mod. I've expanded the purpose of this function.
    """Sets the global event manager's logging options. And registers some BUG events handlers."""

    if not g_eventManager:
        BugUtil.error(
            "BugEventManager - BugEventManager not setup before configure()")
        return

    g_eventManager.setLogging(logging)
    g_eventManager.setNoLogEvents(noLogEvents)

    # K-Mod. Don't use register BUG events for PitBoss host.
    # (Note: actually, if this is a PitBoss host, this function won't even be called
    #  because the BUG core will not initialize any mod components in PitBoss mode.)
    if CyGame().isPitbossHost():
        BugUtil.debug(
            "BugEventManager - skipping event registration for PitBoss host")
        return
    # K-Mod end

    # --------- Better BTS AI (2/2) (moved by K-Mod) -------------
    # K-Mod, only enable these features if the cheat mode is enabled.
    #if getChtLvl():
    # advc.127: Replacing the above. ChtLvl is always 0 in multiplayer.
    if getChtLvl() or (CyGame().isGameMultiPlayer()
                       and gc.getDefineINT("ENABLE_AUTOPLAY_MULTIPLAYER") > 0):
        AIAutoPlay.AIAutoPlay(g_eventManager)
        ChangePlayer.ChangePlayer(g_eventManager)
        Tester.Tester(g_eventManager)

    # advc.106c: Changed OnLoad handler
    g_eventManager.addEventHandler("kbdEvent", g_eventManager.onKbdEvent)
    g_eventManager.addEventHandler("OnLoad",
                                   g_eventManager.resetActiveTurnAfterLoad)
    g_eventManager.addEventHandler("GameStart", g_eventManager.resetActiveTurn)
    g_eventManager.addEventHandler("gameUpdate", g_eventManager.onGameUpdate)
示例#9
0
文件: Main.py 项目: aytop/Yolo
def main():
    net = YoloNet.YOLONet()
    criterion = Loss.MyLoss()
    if input('Do you want to load network?').upper() == 'N':
        optimizer = optim.Adam(net.parameters(), lr=1e-4)
        train_data = Dataset.DetectionDataSet()
        trainer = Trainer.Trainer(net=net,
                                  data_set=train_data,
                                  optimizer=optimizer,
                                  criterion=criterion)
        trainer.train()
    else:
        net.load_state_dict(torch.load('yolo_cpu.pt'))
    test_data = Dataset.DetectionDataSet(paths='numpy_test/paths.txt',
                                         label_dir='numpy_test/',
                                         root_dir='test/')
    tester = Tester.Tester(net=net,
                           test_criterion=criterion,
                           data_set=test_data)
    tester.test()
示例#10
0
def configure(logging=None, noLogEvents=None):
    # """Sets the global event manager's logging options."""
    # if g_eventManager:
    # g_eventManager.setLogging(logging)
    # g_eventManager.setNoLogEvents(noLogEvents)
    # else:
    # BugUtil.error("BugEventManager - BugEventManager not setup before configure()")
    # K-Mod. I've expanded the purpose of this function.
    """Sets the global event manager's logging options. And registers some BUG events handlers."""

    if not g_eventManager:
        BugUtil.error(
            "BugEventManager - BugEventManager not setup before configure()")
        return

    g_eventManager.setLogging(logging)
    g_eventManager.setNoLogEvents(noLogEvents)

    # K-Mod. Don't use register BUG events for PitBoss host.
    # (Note: actually, if this is a PitBoss host, this function won't even be called
    #  because the BUG core will not initialize any mod components in PitBoss mode.)
    if CyGame().isPitbossHost():
        BugUtil.debug(
            "BugEventManager - skipping event registration for PitBoss host")
        return
    # K-Mod end

    # --------- Better BTS AI (2/2) (moved by K-Mod) -------------
    AIAutoPlay.AIAutoPlay(g_eventManager)
    ChangePlayer.ChangePlayer(g_eventManager)
    Tester.Tester(g_eventManager)

    # advc.106c: Changed OnLoad handler
    g_eventManager.addEventHandler("kbdEvent", g_eventManager.onKbdEvent)
    g_eventManager.addEventHandler("OnLoad",
                                   g_eventManager.resetActiveTurnAfterLoad)
    g_eventManager.addEventHandler("GameStart", g_eventManager.resetActiveTurn)
    g_eventManager.addEventHandler("gameUpdate", g_eventManager.onGameUpdate)
示例#11
0
def gen_big(iSeq1_len, sSeq1_len, iSeq2_len, sSeq2_len, dSeq1_len, dSeq2_len):
    return Tester.BigData(mediumData=gen_medium(iSeq1_len, sSeq1_len),
                          n5=random.randint(1, 1000),
                          n6=random.randint(1, 1000),
                          n7=random.randint(1, 1000),
                          n8=random.randint(1, 1000),
                          n9=random.randint(1, 1000),
                          n10=random.randint(1, 1000),
                          s3=random_string(10),
                          s4=random_string(10),
                          s5=random_string(10),
                          s6=random_string(10),
                          s7=random_string(10),
                          s8=random_string(10),
                          d3=random.uniform(1, 100.0),
                          d4=random.uniform(1, 100.0),
                          d5=random.uniform(1, 100.0),
                          b3=random_bool(),
                          b4=random_bool(),
                          b5=random_bool(),
                          iSeq2=random_i_list(iSeq2_len),
                          sSeq2=random_s_list(sSeq2_len),
                          dSeq1=random_d_list(dSeq1_len),
                          dSeq2=random_d_list(dSeq2_len))
示例#12
0
test_loader = torch.utils.data.DataLoader(test_set,
                                          batch_size=1,
                                          shuffle=False,
                                          num_workers=0)

if name == 'densenet':
    model = models.densenet161(pretrained=False)
    model.classifier = nn.Sequential(
        nn.Dropout(0.3), nn.Linear(model.classifier.in_features, num_classes))
    model = torch.nn.DataParallel(model).module
    model_path = os.path.join(workspace, 'checkpoints',
                              trained + str(num_classes), 'densenet.pth')
    model.load_state_dict(torch.load(model_path, map_location='cuda:0'))
elif name == 'inception':
    model = models.inception_v3(pretrained=True, aux_logits=False)
    model.fc = nn.Linear(model.fc.in_features, num_classes)
    model_path = os.path.join(workspace, 'checkpoints',
                              trained + str(num_classes), 'inception.pth')
    model.load_state_dict(torch.load(model_path, map_location='cuda:0'))
else:
    model = models.resnext50_32x4d(pretrained=True)
    model.fc = nn.Sequential(nn.Dropout(0.3),
                             nn.Linear(model.fc.in_features, num_classes))
    model_path = os.path.join(workspace, 'checkpoints',
                              trained + str(num_classes), 'resnext.pth')
    model.load_state_dict(torch.load(model_path, map_location='cuda:0'))

test_acc, f1_test, cm, out, labels, preds = tester.test(
    model, device, test_loader, test_size, name)
#utils.plot_confusion_matrix(cm, classes, name + '_' + str(num_classes) + '_' + trained, workspace, name + ' - acc: ' + str(test_acc.item()), save=False)
    rms = audioop.rms(data, 2)  # here's where you calculate the volume
    #print("yo: ",audioop.avg(data, 2), rms)

    # difference between current volume and last volume
    #
    diff = rms - lastRms

    percentage = rms / 100

    # checks if |diff| exceeds the difference_threshold
    if (abs(diff) >= DIFFERENCE_THRESHOLD):

        # sets the brightness value
        bri = int(BRI_MODIFIER * percentage)

        if (bri < 0):
            bri = 0
        elif (bri > 254):
            bri = 254

        print("Difference: ", diff, "\nBrightness: ", bri)
        t.change_bri(bri)

    lastRms = rms

print("* done")

stream.stop_stream()
stream.close()

p.terminate()
def target_spotted(direction):
    gamefile.pointgun(direction * 1.4)
    gamefile.fire()
    gamefile.fire()
    gamefile.fire()
示例#15
0
test_labs[n_label_0 : ,1 ] = 1
test_cls = np.argmax(test_labs,axis=1)

print len(paths_0)
print len(paths_1)

# Image
for i,path in enumerate(paths_0 + paths_1):
    print i,os.path.split(path)[-1]
    img=np.asarray(Image.open(path).convert('RGB'))
    imgs.append(img)
test_imgs=np.asarray(imgs)

assert len(test_labs) == len(test_imgs)
print np.shape(test_imgs)
tester=Tester.Tester(None)
tester._reconstruct_model(restore_model)
tester.n_classes =2
test_imgs = test_imgs/255.
tester.validate(test_imgs , test_labs, 60 ,0 ,False)

for i,path in enumerate(paths_0 + paths_1):
    print os.path.split(path)[-1].split('_')[0] , tester.pred_all[i] ,test_cls[i]

inspect_cam(tester.sess , tester.classmap_op  , tester.top_conv ,test_imgs , test_labs , 0 , tester.x_ , tester.y_ , tester.is_training , tester.logits_ )
actmap=tester.sess.run(tester.classmap_op , {tester.x_: test_imgs[0:1] , tester.is_training :False})
actmap=np.squeeze(actmap)
print np.shape(actmap)
plt.imsave('actmap_0.png' , actmap)

print ''
parser.add_argument(
    '--lrde',
    default=20,
    type=int,
    help='[net] divided the learning rate 10 by every lrde epochs')
parser.add_argument('--mom', default=0.9, type=float, help='[net] momentum')
parser.add_argument('--wd',
                    default=1e-3,
                    type=float,
                    help='[net] weight decay')
parser.add_argument('--lr',
                    default=0.01,
                    type=float,
                    help='[net] learning rate')
parser.add_argument('--ep', default=60 * 1, type=int, help='[net] epoch')
parser.add_argument('--beta',
                    default=0.3,
                    type=float,
                    help='[net] hyperparameter for pre-class loss weight')
parser.add_argument('--pmp',
                    default=pmp,
                    type=str,
                    help='[net] pre-trained model path')
args = parser.parse_args()

print args
print int((args.sr * args.msc) / args.hs)

Trer = Tester(args)
pred = Trer.run()
示例#17
0
        print("Error: missing files")
        exit(-1)

    classes = 3

    training_data = numpy.genfromtxt(sys.argv[1], delimiter=',', dtype="|U5")
    training_labels = numpy.genfromtxt(sys.argv[2], delimiter=',')
    test_data = numpy.genfromtxt(sys.argv[3], delimiter=',', dtype="|U5")

    training_data, test_data = Preparations.Preparations(
        training_data, test_data).prepare(1)

    perceptron_weights, svm_weights, pa_weights = Trainer.Trainer(
        training_data, training_labels, classes).train_all_simul()

    tester = Tester.Tester(test_data, perceptron_weights, svm_weights,
                           pa_weights)

    tester.test()

    if len(sys.argv) == 5 and True:  # debug mode
        perceptron_success_rate, svm_success_rate, pa_success_rate = tester.calculate_statistics(
            numpy.genfromtxt(sys.argv[4], delimiter=','))
        print("succeeds rate: per: {}, svm:{}, pa: {}".format(
            perceptron_success_rate, svm_success_rate, pa_success_rate))
        Grapher.Grapher(training_data, training_labels, test_data,
                        numpy.genfromtxt(sys.argv[4]),
                        classes).perceptron_graph()
    else:  # testing mode
        tester.test()
示例#18
0
   tests["しんおさか"] = "shin'osaka"
   tests["ネイセン"] = "NEISEN'"
   tests["てゐ"] = "tewi"
   tests["ハニュー"] = "HANYU-"
   for x in tests:
      result = JapaneseTools.Conversion.convert(x, sourcetype="k", targettype="r")
      if result != tests[x]: return Tester.Result(False, "Failed on '" + x + "'")
   return Tester.Result(True, "All Kana to Romaji worked properly")
   

#TODO : Make n/n' more intelligent in the k to r converter                               
#print(JapaneseTools.Conversion.convert("しんぶん", targettype="r"))

#print(JapaneseTools.Conversion.convert("ハニュー", targettype="r"))
   
t = Tester.Tester()
t.addTest("Romaji To Kana", "Tests Romaji to Kana conversion", rtok)
t.addTest("Type Detection", "Tests the capacity to determine the type of a string", getType)
t.addTest("Kana To Romaji", "Tests Kana to Romaji conversion", ktor)

Tester.makeGUI(t)

t.doAllTests()

print("t")

r = t.getAllTests()
for x in r:
   print(str(x))
   print("")
def commands():
    gamefile.move(180)
    gamefile.fire()
    gamefile.stop(180)
    gamefile.fire()
    gamefile.turn_left(120)
    gamefile.fire()
    gamefile.turn_right(120)
    gamefile.fire()
    gamefile.turn_right(120)
    gamefile.fire()
    gamefile.turn_left(120)
    gamefile.fire()
    gamefile.done()
示例#20
0
)
powershellRunner.t1(username, password)
print(
    "Analyzing Process stage 1                                             [OK - NO ERROR]"
)
print(
    "Analyzing Process stage 2: Extracts IP addresses                              [START]"
)
csvAnalyzer.analyzer()
print(
    "Analyzing Process stage 2:                                            [OK - NO ERROR]"
)
print(
    "Analyzing Process stage 3: Ip Analyzing -  Finding Ips GeoLocation etc        [START]"
)
Tester.ipAnalyzer()
print(
    "Analyzing Process stage 3                                             [OK - NO ERROR]"
)
print(
    "Analyzing Process stage 4: Ip Analyzing -  Extracting rules                   [START]"
)
powershellRunner.t2(username, password)
print(
    "Analyzing Process stage 4:                                            [OK - NO ERROR]"
)
print(
    "Analyzing Process stage 5: Logon Analyzing                                    [START]"
)
GeoLogonalyzer.geoLogonAnalyer()
powershellRunner.t3()
示例#21
0
def main():
    workspace = os.path.abspath("../")
    num_classes = 5
    trained = 'last'
    # test_fold = 1
    data_dir = os.path.join(workspace, 'Datasets',
                            str(num_classes) + '-classes')

    # ResNeXt and DenseNet
    transform0 = transforms.Compose([
        transforms.Resize(224),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    # Inception
    transform1 = transforms.Compose([
        transforms.Resize(299),
        transforms.CenterCrop(299),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    test_dir = os.path.join(data_dir, 'Val')

    test_set_0 = datasets.ImageFolder(test_dir, transform0)
    test_set_1 = datasets.ImageFolder(test_dir, transform1)

    test_size = len(test_set_0)
    classes = test_set_0.classes
    print(classes)

    test_loader0 = torch.utils.data.DataLoader(test_set_0,
                                               batch_size=1,
                                               shuffle=False,
                                               num_workers=0)
    test_loader1 = torch.utils.data.DataLoader(test_set_1,
                                               batch_size=1,
                                               shuffle=False,
                                               num_workers=0)

    loaders = [test_loader0, test_loader1, test_loader0]

    model_path = os.path.join(workspace, 'checkpoints',
                              trained + str(num_classes))
    nets = [os.path.join(model_path, x) for x in os.listdir(model_path)]

    model_list, model_name = load_model(model_path, nets, num_classes)

    test_accs, test_f1s, cms, outs = [], [], [], []

    softmax = nn.Softmax(dim=0)

    for i in range(len(model_list)):
        test_acc, f1_test, cm, out, labels, _ = tester.test(
            model_list[i], device, loaders[i], test_size, model_name[i])

        out = [softmax(x).cpu().numpy() for x in out]
        out = np.asmatrix(out)

        test_accs.append(test_acc)
        test_f1s.append(f1_test)
        cms.append(cm)
        outs.append(out)

        #utils.plot_confusion_matrix(cm, classes, model_name[i] + '_' + str(num_classes), workspace, model_name[i] + ' - Acc: ' + str(round(test_acc.item(), 3)) + '%', save=False)
        #utils.create_test_log(workspace, cm, test_acc, f1_test, model_name[i], test_fold)

    start = datetime.datetime.now()
    preds, labels, total_correct = predict_with_ensemble(
        outs, utils.list_toTorch(labels))
    end = datetime.datetime.now()
    elapsed = end - start
    # for i in range(len(preds)):
    #     if labels[i] == 1 and preds[i] != labels[i]:
    #         sample_fname, _ = test_loader0.dataset.samples[i]
    #         print(sample_fname.split('\\')[-1])
    #         print('pred', preds[i].item(),'label', labels[i].item())

    total_acc = total_correct.numpy() / len(preds.numpy())
    total_fscore = f1_score(labels, preds, average='micro')
    total_cm = confusion_matrix(labels, preds)

    print('\n[INFO] ensemble model testing complete')
    print('- total accuracy = ', total_acc)
    print('- total F1-score = ', total_fscore)
    print('- elapsed time (microsec) = ', elapsed.microseconds)

    #utils.compute_AUC_scores(labels, preds, classes)

    #timestamp = str(datetime.datetime.now()).split('.')[0]
    #utils.plot_confusion_matrix(total_cm, classes, 'ensamble_' + str(num_classes) + '_' + trained, workspace, 'Ensamble - acc: ' + str(round(total_acc.item(),3)) + '%', save=False)
    return labels, preds, classes, total_cm
示例#22
0
    def run(self):
        for i in self.data["Insurance"]:
            ins = Insurance(i["insuranceId"])
            ins.setType(i["type"])
            ins.setInsuranceCeiling(i["ceil"])
            ins.setInsuranceRate(i["rate"])
            self.insurances.append(ins)

        for i in self.data["Patient"]:
            p = Patient(i["id"])
            p.setName(i["name"])
            p.setUsername(i["username"])
            p.setLastName(i["family"])
            p.setGender(i["gender"])
            p.setPhoneNumber(i["phone"])
            p.setPassword(i["pass"])
            p.setAge(i["age"])
            p.setDisease(i["disease"])
            for ins in self.insurances:
                if ins.getInsuranceId() == i["insurance"]["insuranceId"]:
                    p.setInsurance(ins)
            p.setPrescription(i["prescription"])
            self.patients.append(p)

        for i in self.data["Test"]:
            t = Test(i["id"])
            t.setTestDescription(i["description"])
            t.setTestPreCondition(i["preCondition"])
            t.setBasePrice(i["basePrice"])
            self.tests.append(t)

        for i in self.data["TimeSlot"]:
            t = TimeSlot(i["year"], i["month"], i["day"], i["start"], i["end"],
                         i["id"], i["status"])
            self.timeSlots.append(t)

        for i in self.data["Tester"]:
            t = Tester(i["id"])
            t.setName(i["name"])
            t.setLastName(i["family"])
            t.setGender(i["gender"])
            t.setPhoneNumber(i["phone"])
            allTimes = []
            for atid in i["available_time"]:
                for ts in self.timeSlots:
                    if atid == ts.getId():
                        allTimes.append(ts)
            t.setAllTimes(allTimes)
            self.testers.append(t)

        for i in self.data["Labratory"]:
            l = Labratory(i["id"])
            l.setName(i["name"])
            l.setAvailableTests(i["availableTests"])
            l.setPriceRate(i["priceRate"])
            allTesters = []
            for t in i["testers"]:
                for tester in self.testers:
                    if t == tester.getId():
                        allTesters.append(tester)
            l.setTesters(allTesters)
            self.labratories.append(l)
示例#23
0
def gen_small(iSeq1_len):
    return Tester.SmallData(n1=random.randint(1, 1000),
                            n2=random.randint(1, 1000),
                            s1=random_string(10),
                            b1=random_bool(),
                            iSeq1=random_i_list(iSeq1_len))
示例#24
0
    if outcome.upper() == 'PASS':
        result = 1
    else:
        result = 0
    output = 'Result: '
    if result == 1:
        output += 'PASS\n'
    else:
        output += 'FAIL\n'
    return result, output


def test_01():
    output = ('test_01\n' '\t1. Run the test\n' '\t2. Check if it passes\n')
    print output
    result, passed = isPassed()
    output += passed
    return (result, output)


def test_02():
    output = ('test_01\n' '\t1. Run the test\n' '\t2. Check if it passes\n')
    print output
    result, passed = isPassed()
    output += passed
    return (result, output)


if __name__ == '__main__':
    Tester.run('SampleTest')
示例#25
0
def menu():
    continueGame = Button((255, 255, 255), "Buttons/ContinueButton.png",
                          (0, 200))
    newGame = Button((255, 255, 255), "Buttons/NewGameButton.png", (0, 250))
    instructions = Button((255, 255, 255), "Buttons/InstructionButton.png",
                          (200, 200))
    sentences = Button((255, 255, 255), "Buttons/SentencesButton.png",
                       (200, 250), (100, 40))
    customizations = Button((255, 255, 255),
                            "Buttons/CustomizationsButton.png", (400, 200))
    credits = Button((255, 255, 255), "Buttons/creditsButton.png", (400, 250))
    quit = Button((255, 255, 255), "Buttons/QuitButton.png", (200, 450))

    jetpackMode = False
    jetpack = Button((255, 255, 255), "res/testButton.png", (450, 450),
                     (50, 50))

    twoPlayerMode = False
    twoPlayer = Button((255, 255, 255), "res/testButton.png", (0, 450),
                       (50, 50))

    Tester.restart()

    state = 0
    while state == 0:

        screen.fill([255, 255, 255])
        screen.blit(background, backgroundRect)
        screen.blit(continueGame.image, continueGame)
        screen.blit(newGame.image, newGame)
        screen.blit(instructions.image, instructions)
        screen.blit(sentences.image, sentences)
        screen.blit(customizations.image, customizations)
        screen.blit(credits.image, credits)
        screen.blit(jetpack.image, jetpack)
        screen.blit(twoPlayer.image, twoPlayer)
        screen.blit(quit.image, quit)

        pygame.display.update()
        for event in pygame.event.get():
            if event.type == QUIT or (event.type == KEYDOWN
                                      and event.key == K_ESCAPE):
                sys.exit("quit game")
            if event.type == MOUSEBUTTONDOWN:
                loc = pygame.mouse.get_pos()
                if (continueGame.clicked(loc[0], loc[1])):
                    Tester.setBoatImage(Customizations.getSelectedBoat())
                    Tester.resume()
                elif (newGame.clicked(loc[0], loc[1])):
                    Tester.setSentenceFile(SentenceSelector.getSelected())
                    Tester.restart()
                    Tester.setBoatImage(Customizations.getSelectedBoat())
                    Tester.resume()
                elif (instructions.clicked(loc[0], loc[1])):
                    print("instruction menu")
                    Instructions.load()
                elif (sentences.clicked(loc[0], loc[1])):
                    SentenceSelector.load()
                    pass
                elif (customizations.clicked(loc[0], loc[1])):
                    Customizations.load()
                    pass
                elif (credits.clicked(loc[0], loc[1])):
                    Credits.load()
                    pass
                elif (jetpack.clicked(loc[0], loc[1])):
                    jetpackMode = not jetpackMode
                    print "Jetpack mode: " + str(jetpackMode)
                    Tester.setJetpackMode(jetpackMode)
                elif (twoPlayer.clicked(loc[0], loc[1])):
                    twoPlayerMode = not twoPlayerMode
                    print "Two player mode: " + str(twoPlayerMode)
                    Tester.setTwoPlayerMode(twoPlayerMode)
                elif (quit.clicked(loc[0], loc[1])):
                    return
示例#26
0
def test_01():
    testName = 'Camera Connection'
    output = (testName + '\n'
              '\t1. Connect the camera via USB\n'
              '\t2. Verify log includes "Camera Connected!" message\n'
              '\t3. Disconnect the camera\n'
              '\t4. Verify log includes "Camera Disconnected!" message\n')
    print output
    result, passed = isPassed()
    output += passed
    return (result, output)

def test_02():
    testName = 'Downloaded Images stay on Camera'
    output = (testName + '\n'
              '\t1. Connect the camera via USB\n'
              '\t2. Open up the directory specified in the config file\n'
              '\t3. Take a new photo\n'
              '\t4. Verify photo appears in specified directory\n'
              '\t5. Open up the directory the filesystem gives the camera\n'
              '\t6. Verify photo appears in camera memory\n')
    print output
    result, passed = isPassed()
    output += passed
    return (result, output)

if __name__ == '__main__':
    Tester.run('ReaderTest')
    
示例#27
0
def test_01():
    testName = 'Camera Connection'
    output = (testName + '\n'
              '\t1. Connect the camera via USB\n'
              '\t2. Verify log includes "Camera Connected!" message\n'
              '\t3. Disconnect the camera\n'
              '\t4. Verify log includes "Camera Disconnected!" message\n')
    print output
    result, passed = isPassed()
    output += passed
    return (result, output)


def test_02():
    testName = 'Downloaded Images stay on Camera'
    output = (testName + '\n'
              '\t1. Connect the camera via USB\n'
              '\t2. Open up the directory specified in the config file\n'
              '\t3. Take a new photo\n'
              '\t4. Verify photo appears in specified directory\n'
              '\t5. Open up the directory the filesystem gives the camera\n'
              '\t6. Verify photo appears in camera memory\n')
    print output
    result, passed = isPassed()
    output += passed
    return (result, output)


if __name__ == '__main__':
    Tester.run('ReaderTest')
示例#28
0
    else:
        result = 0
    output = 'Result: '
    if result == 1:
        output += 'PASS\n'
    else:
        output += 'FAIL\n'
    return result, output

def test_01():
    output = ('test_01\n'
              '\t1. Run the test\n'
              '\t2. Check if it passes\n')
    print output
    result, passed = isPassed()
    output += passed
    return (result, output)

def test_02():
    output = ('test_01\n'
              '\t1. Run the test\n'
              '\t2. Check if it passes\n')
    print output
    result, passed = isPassed()
    output += passed
    return (result, output)

if __name__ == '__main__':
    Tester.run('SampleTest')
    
    
示例#29
0
import Tester
import csv
import json

typetester = Tester.Tester()
lineswithpoints = {}
longeststrings = {}
linespecialchars = {}
outputdictlist = []
text = typetester.retrieveText()
text = typetester.addMarkers(text)
text = text.replace("\n", " ")
lines = text.split("<>")
longestwords = typetester.longestWords(lines, longeststrings)
lineratings = typetester.rateSpecialChars(lines, linespecialchars)
for line in lines:
    line.rstrip("\n")
    linedifficulty = typetester.calculateLineComplexity(
        line, longeststrings, linespecialchars)
    lineswithpoints[line] = linedifficulty

with open("Difficulties.json", 'w') as outfile:
    for item in lineswithpoints.items():
        outputdict = {
        }  #Creates a new dictionary for each tuple because in the test file there is a dictionary for each line and its difficulty
        outputdict["text"] = item[
            0]  #Stores the line under the "text" key ready for uploading to the database
        outputdict["difficulty"] = item[
            1]  #Stores the line's difficulty under the "difficulty" key ready for uploading to the database
        outputdictlist.append(
            outputdict