def distance2Weights(ssdo, neighborType = 1, distanceBand = 0.0, numNeighs = 0, distanceType = "euclidean", exponent = 1.0, rowStandard = True, includeSelf = False): """Uses ArcGIS Neighborhood Searching Structure to create a PySAL Sparse Spatial Weights Matrix. INPUTS: ssdo (class): instance of SSDataObject [1] neighborType {int, 1}: 0 = inverse distance, 1 = fixed distance, 2 = k-nearest-neighbors, 3 = delaunay distanceBand {float, 0.0}: return all neighbors within this distance for inverse/fixed distance numNeighs {int, 0}: number of neighbors for k-nearest-neighbor, can also be used to set a minimum number of neighbors for inverse/fixed distance distanceType {str, euclidean}: manhattan or euclidean distance [2] exponent {float, 1.0}: distance decay factor for inverse distance rowStandard {bool, True}: whether to row standardize the spatial weights includeSelf {bool, False}: whether to return self as a neighbor NOTES: (1) Data must already be obtained using ssdo.obtainDataGA() (2) Chordal Distance is used for GCS Data """ neighbors = {} weights = {} gaSearch = GAPY.ga_nsearch(ssdo.gaTable) if neighborType == 3: gaSearch.init_delaunay() neighSearch = ARC._ss.NeighborWeights(ssdo.gaTable, gaSearch, weight_type = 1) else: if neighborType == 2: distanceBand = 0.0 weightType = 1 else: weightType = neighborType concept, gaConcept = WU.validateDistanceMethod(distanceType.upper(), ssdo.spatialRef) gaSearch.init_nearest(distanceBand, numNeighs, gaConcept) neighSearch = ARC._ss.NeighborWeights(ssdo.gaTable, gaSearch, weight_type = weightType, exponent = exponent, include_self = includeSelf) for i in range(len(neighSearch)): neighOrderIDs, neighWeights = neighSearch[i] neighbors[i] = neighOrderIDs weights[i] = neighWeights w = PYSAL.W(neighbors, weights) if rowStandard: w.transform = 'R' return w
def distance2SWM(inputFC, swmFile, masterField, fixed = 0, concept = "EUCLIDEAN", exponent = 1.0, threshold = None, kNeighs = 1, rowStandard = True): """Creates a sparse spatial weights matrix (SWM) based on k-nearest neighbors. INPUTS: inputFC (str): path to the input feature class swmFile (str): path to the SWM file. masterField (str): field in table that serves as the mapping. fixed (boolean): fixed (1) or inverse (0) distance? concept: {str, EUCLIDEAN}: EUCLIDEAN or MANHATTAN exponent {float, 1.0}: distance decay threshold {float, None}: distance threshold kNeighs (int): number of neighbors to return rowStandard {bool, True}: row standardize weights? """ #### Create SSDataObject #### ssdo = SSDO.SSDataObject(inputFC, templateFC = inputFC, useChordal = True) #### Validation of Master Field #### verifyMaster = ERROR.checkField(ssdo.allFields, masterField, types = [0,1]) #### Read Data #### ssdo.obtainDataGA(masterField, minNumObs = 2) N = ssdo.numObs gaTable = ssdo.gaTable if fixed: wType = 1 else: wType = 0 #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Set the Distance Threshold #### concept, gaConcept = WU.validateDistanceMethod(concept, ssdo.spatialRef) if threshold == None: threshold, avgDist = WU.createThresholdDist(ssdo, concept = concept) #### Assures that the Threshold is Appropriate #### gaExtent = UTILS.get92Extent(ssdo.extent) threshold, maxSet = WU.checkDistanceThreshold(ssdo, threshold, weightType = wType) #### If the Threshold is Set to the Max #### #### Set to Zero for Script Logic #### if maxSet: #### All Locations are Related #### threshold = SYS.maxint if N > 500: ARCPY.AddIDMessage("Warning", 717) #### Assure k-Nearest is Less Than Number of Features #### if kNeighs >= N and fixed: ARCPY.AddIDMessage("ERROR", 975) raise SystemExit() #### Create Distance/k-Nearest Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaSearch.init_nearest(threshold, kNeighs, gaConcept) neighWeights = ARC._ss.NeighborWeights(gaTable, gaSearch, weight_type = wType, exponent = exponent, row_standard = False) #### Set Progressor for Weights Writing #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84127), 0, N, 1) #### Initialize Spatial Weights Matrix File #### swmWriter = WU.SWMWriter(swmFile, masterField, ssdo.spatialRefName, N, rowStandard, inputFC = inputFC, wType = wType, distanceMethod = concept, exponent = exponent, threshold = threshold) #### Unique Master ID Dictionary #### masterDict = {} #### Unique Master ID Dictionary #### masterSet = set([]) for row in xrange(N): masterID = int(gaTable[row][2]) if masterID in masterSet: ARCPY.AddIDMessage("Error", 644, masterField) ARCPY.AddIDMessage("Error", 643) raise SystemExit() else: masterSet.add(masterID) neighs, weights = neighWeights[row] neighs = [ gaTable[nh][2] for nh in neighs ] #### Add Spatial Weights Matrix Entry #### swmWriter.swm.writeEntry(masterID, neighs, weights) #### Set Progress #### ARCPY.SetProgressorPosition() swmWriter.close() del gaTable #### Report Warning/Max Neighbors #### swmWriter.reportNeighInfo() #### Add Linear/Angular Unit (Distance Based Only) #### distanceOut = ssdo.distanceInfo.outputString distanceOut = [ARCPY.GetIDMessage(84344).format(distanceOut)] #### Report Spatial Weights Summary #### swmWriter.report(additionalInfo = distanceOut) #### Report SWM File is Large #### swmWriter.reportLargeSWM()
def spaceTime2SWM(inputFC, swmFile, masterField, concept = "EUCLIDEAN", threshold = None, rowStandard = True, timeField = None, timeType = None, timeValue = None): """ inputFC (str): path to the input feature class swmFile (str): path to the SWM file. masterField (str): field in table that serves as the mapping. concept: {str, EUCLIDEAN}: EUCLIDEAN or MANHATTAN threshold {float, None}: distance threshold rowStandard {bool, True}: row standardize weights? timeField {str, None}: name of the date-time field timeType {str, None}: ESRI enumeration of date-time intervals timeValue {float, None}: value forward and backward in time """ #### Assure Temporal Parameters are Set #### if not timeField: ARCPY.AddIDMessage("ERROR", 1320) raise SystemExit() if not timeType: ARCPY.AddIDMessage("ERROR", 1321) raise SystemExit() if not timeValue or timeValue <= 0: ARCPY.AddIDMessage("ERROR", 1322) raise SystemExit() #### Create SSDataObject #### ssdo = SSDO.SSDataObject(inputFC, templateFC = inputFC, useChordal = True) cnt = UTILS.getCount(inputFC) ERROR.errorNumberOfObs(cnt, minNumObs = 2) ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84001), 0, cnt, 1) #### Validation of Master Field #### verifyMaster = ERROR.checkField(ssdo.allFields, masterField, types = [0,1]) badIDs = [] #### Create Temporal Hash #### timeInfo = {} xyCoords = NUM.empty((cnt, 2), float) #### Process Field Values #### fieldList = [masterField, "SHAPE@XY", timeField] try: rows = DA.SearchCursor(ssdo.catPath, fieldList, "", ssdo.spatialRefString) except: ARCPY.AddIDMessage("ERROR", 204) raise SystemExit() #### Add Data to GATable and Time Dictionary #### c = 0 for row in rows: badRow = False #### Assure Masterfield is Valid #### masterID = row[0] if masterID == None or masterID == "": badRow = True #### Assure Date/Time is Valid #### timeStamp = row[-1] if timeStamp == None or timeStamp == "": badRow = True #### Assure Centroid is Valid #### badXY = row[1].count(None) if not badXY: x,y = row[1] xyCoords[c] = (x,y) else: badRow = True #### Process Data #### if not badRow: if timeInfo.has_key(masterID): #### Assure Uniqueness #### ARCPY.AddIDMessage("Error", 644, masterField) ARCPY.AddIDMessage("Error", 643) raise SystemExit() else: #### Fill Date/Time Dict #### startDT, endDT = TUTILS.calculateTimeWindow(timeStamp, timeValue, timeType) timeInfo[masterID] = (timeStamp, startDT, endDT) else: badIDs.append(masterID) #### Set Progress #### c += 1 ARCPY.SetProgressorPosition() #### Clean Up #### del rows #### Get Set of Bad IDs #### numBadObs = len(badIDs) badIDs = list(set(badIDs)) badIDs.sort() badIDs = [ str(i) for i in badIDs ] #### Process any bad records encountered #### if numBadObs: ERROR.reportBadRecords(cnt, numBadObs, badIDs, label = masterField) #### Load Neighbor Table #### gaTable, gaInfo = WU.gaTable(ssdo.inputFC, fieldNames = [masterField, timeField], spatRef = ssdo.spatialRefString) numObs = len(gaTable) xyCoords = xyCoords[0:numObs] #### Set the Distance Threshold #### concept, gaConcept = WU.validateDistanceMethod(concept, ssdo.spatialRef) if threshold == None: #### Set Progressor for Search #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84144)) #### Create k-Nearest Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaSearch.init_nearest(0.0, 1, gaConcept) neighDist = ARC._ss.NeighborDistances(gaTable, gaSearch) N = len(neighDist) threshold = 0.0 sumDist = 0.0 #### Find Maximum Nearest Neighbor Distance #### for row in xrange(N): dij = neighDist[row][-1][0] if dij > threshold: threshold = dij sumDist += dij ARCPY.SetProgressorPosition() #### Increase For Rounding Error #### threshold = threshold * 1.0001 avgDist = sumDist / (N * 1.0) #### Add Linear/Angular Units #### thresholdStr = ssdo.distanceInfo.printDistance(threshold) ARCPY.AddIDMessage("Warning", 853, thresholdStr) #### Chordal Default Check #### if ssdo.useChordal: hardMaxExtent = ARC._ss.get_max_gcs_distance(ssdo.spatialRef) if threshold > hardMaxExtent: ARCPY.AddIDMessage("ERROR", 1609) raise SystemExit() #### Clean Up #### del gaSearch #### Create Missing SSDO Info #### extent = UTILS.resetExtent(xyCoords) #### Reset Coordinates for Chordal #### if ssdo.useChordal: sliceInfo = UTILS.SpheroidSlice(extent, ssdo.spatialRef) maxExtent = sliceInfo.maxExtent else: env = UTILS.Envelope(extent) maxExtent = env.maxExtent threshold = checkDistanceThresholdSWM(ssdo, threshold, maxExtent) #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Create Distance Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) gaSearch.init_nearest(threshold, 0, gaConcept) neighSearch = ARC._ss.NeighborSearch(gaTable, gaSearch) #### Set Progressor for Weights Writing #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84127), 0, numObs, 1) #### Initialize Spatial Weights Matrix File #### swmWriter = WU.SWMWriter(swmFile, masterField, ssdo.spatialRefName, numObs, rowStandard, inputFC = inputFC, wType = 9, distanceMethod = concept, threshold = threshold, timeField = timeField, timeType = timeType, timeValue = timeValue) for row in xrange(numObs): masterID = gaTable[row][2] #### Get Date/Time Info #### dt0, startDT0, endDT0 = timeInfo[masterID] nhs = neighSearch[row] neighs = [] weights = [] for nh in nhs: #### Search Through Spatial Neighbors #### neighID = gaTable[nh][2] #### Get Date/Time Info #### dt1, startDT1, endDT1 = timeInfo[neighID] #### Filter Based on Date/Time #### insideTimeWindow = TUTILS.isTimeNeighbor(startDT0, endDT0, dt1) if insideTimeWindow: neighs.append(neighID) weights.append(1.0) #### Add Spatial Weights Matrix Entry #### swmWriter.swm.writeEntry(masterID, neighs, weights) #### Set Progress #### ARCPY.SetProgressorPosition() swmWriter.close() del gaTable #### Report Warning/Max Neighbors #### swmWriter.reportNeighInfo() #### Report Spatial Weights Summary #### swmWriter.report() #### Report SWM File is Large #### swmWriter.reportLargeSWM()
def polygon2SWM(inputFC, swmFile, masterField, concept = "EUCLIDEAN", kNeighs = 0, rowStandard = True, contiguityType = "ROOK"): """Creates a sparse spatial weights matrix (SWM) based on polygon contiguity. INPUTS: inputFC (str): path to the input feature class swmFile (str): path to the SWM file. masterField (str): field in table that serves as the mapping. concept: {str, EUCLIDEAN}: EUCLIDEAN or MANHATTAN kNeighs {int, 0}: number of neighbors to return (1) rowStandard {bool, True}: row standardize weights? contiguityType {str, Rook}: {Rook = Edges Only, Queen = Edges/Vertices} NOTES: (1) kNeighs is used if polygon is not contiguous. E.g. Islands """ #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Create SSDataObject #### ssdo = SSDO.SSDataObject(inputFC, templateFC = inputFC, useChordal = True) cnt = UTILS.getCount(inputFC) ERROR.errorNumberOfObs(cnt, minNumObs = 2) #### Validation of Master Field #### verifyMaster = ERROR.checkField(ssdo.allFields, masterField, types = [0,1]) #### Create GA Data Structure #### gaTable, gaInfo = WU.gaTable(ssdo.catPath, [masterField], spatRef = ssdo.spatialRefString) #### Assure Enough Observations #### N = gaInfo[0] ERROR.errorNumberOfObs(N, minNumObs = 2) #### Assure k-Nearest is Less Than Number of Features #### if kNeighs >= N: ARCPY.AddIDMessage("ERROR", 975) raise SystemExit() #### Create Nearest Neighbor Search Type For Islands #### if kNeighs > 0: gaSearch = GAPY.ga_nsearch(gaTable) concept, gaConcept = WU.validateDistanceMethod(concept, ssdo.spatialRef) gaSearch.init_nearest(0.0, kNeighs, gaConcept) forceNeighbor = True neighWeights = ARC._ss.NeighborWeights(gaTable, gaSearch, weight_type = 1, row_standard = False) else: forceNeighbor = False neighSearch = None #### Create Polygon Neighbors #### polyNeighborDict = WU.polygonNeighborDict(inputFC, masterField, contiguityType = contiguityType) #### Write Poly Neighbor List (Dict) #### #### Set Progressor for SWM Writing #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84127), 0, N, 1) #### Initialize Spatial Weights Matrix File #### if contiguityType == "ROOK": wType = 4 else: wType = 5 swmWriter = WU.SWMWriter(swmFile, masterField, ssdo.spatialRefName, N, rowStandard, inputFC = inputFC, wType = wType, distanceMethod = concept, numNeighs = kNeighs) #### Keep Track of Polygons w/o Neighbors #### islandPolys = [] #### Write Polygon Contiguity to SWM File #### for row in xrange(N): rowInfo = gaTable[row] oid = rowInfo[0] masterID = rowInfo[2] neighs = polyNeighborDict[masterID] nn = len(neighs) if forceNeighbor: if nn < kNeighs: #### Only Force KNN If Specified & Contiguity is Less #### islandPolys.append(oid) flag = True knnNeighs, knnWeights = neighWeights[row] c = 0 while flag: try: neighID = gaTable[knnNeighs[c]][2] if neighID not in neighs: neighs.append(neighID) nn += 1 if nn == kNeighs: flag = False c += 1 except: flag = False weights = NUM.ones(nn) #### Add Weights Entry #### swmWriter.swm.writeEntry(masterID, neighs, weights) #### Set Progress #### ARCPY.SetProgressorPosition() #### Report on Features with No Neighbors #### countIslands = len(islandPolys) if countIslands: islandPolys.sort() if countIslands > 30: islandPolys = islandPolys[0:30] ERROR.warningNoNeighbors(N, countIslands, islandPolys, ssdo.oidName, forceNeighbor = forceNeighbor, contiguity = True) #### Clean Up #### swmWriter.close() del gaTable #### Report Spatial Weights Summary #### swmWriter.report() #### Report SWM File is Large #### swmWriter.reportLargeSWM() del polyNeighborDict
def kNearest2SWM(inputFC, swmFile, masterField, concept = "EUCLIDEAN", kNeighs = 1, rowStandard = True): """Creates a sparse spatial weights matrix (SWM) based on k-nearest neighbors. INPUTS: inputFC (str): path to the input feature class swmFile (str): path to the SWM file. masterField (str): field in table that serves as the mapping. concept: {str, EUCLIDEAN}: EUCLIDEAN or MANHATTAN kNeighs {int, 1}: number of neighbors to return rowStandard {bool, True}: row standardize weights? """ #### Assure that kNeighs is Non-Zero #### if kNeighs <= 0: ARCPY.AddIDMessage("ERROR", 976) raise SystemExit() #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Create SSDataObject #### ssdo = SSDO.SSDataObject(inputFC, templateFC = inputFC, useChordal = True) cnt = UTILS.getCount(inputFC) ERROR.errorNumberOfObs(cnt, minNumObs = 2) #### Validation of Master Field #### verifyMaster = ERROR.checkField(ssdo.allFields, masterField, types = [0,1]) #### Create GA Data Structure #### gaTable, gaInfo = WU.gaTable(ssdo.catPath, [masterField], spatRef = ssdo.spatialRefString) #### Assure Enough Observations #### N = gaInfo[0] ERROR.errorNumberOfObs(N, minNumObs = 2) #### Process any bad records encountered #### numBadRecs = cnt - N if numBadRecs: badRecs = WU.parseGAWarnings(gaTable.warnings) err = ERROR.reportBadRecords(cnt, numBadRecs, badRecs, label = ssdo.oidName) #### Assure k-Nearest is Less Than Number of Features #### if kNeighs >= N: ARCPY.AddIDMessage("ERROR", 975) raise SystemExit() #### Create k-Nearest Neighbor Search Type #### gaSearch = GAPY.ga_nsearch(gaTable) concept, gaConcept = WU.validateDistanceMethod(concept, ssdo.spatialRef) gaSearch.init_nearest(0.0, kNeighs, gaConcept) neighWeights = ARC._ss.NeighborWeights(gaTable, gaSearch, weight_type = 1, row_standard = False) #### Set Progressor for Weights Writing #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84127), 0, N, 1) #### Initialize Spatial Weights Matrix File #### swmWriter = WU.SWMWriter(swmFile, masterField, ssdo.spatialRefName, N, rowStandard, inputFC = inputFC, wType = 2, distanceMethod = concept, numNeighs = kNeighs) #### Unique Master ID Dictionary #### masterSet = set([]) for row in xrange(N): masterID = int(gaTable[row][2]) if masterID in masterSet: ARCPY.AddIDMessage("Error", 644, masterField) ARCPY.AddIDMessage("Error", 643) raise SystemExit() else: masterSet.add(masterID) neighs, weights = neighWeights[row] neighs = [ gaTable[nh][2] for nh in neighs ] #### Add Spatial Weights Matrix Entry #### swmWriter.swm.writeEntry(masterID, neighs, weights) #### Set Progress #### ARCPY.SetProgressorPosition() swmWriter.close() del gaTable #### Report Warning/Max Neighbors #### swmWriter.reportNeighInfo() #### Report Spatial Weights Summary #### swmWriter.report() #### Report SWM File is Large #### swmWriter.reportLargeSWM()
def distance2Weights(ssdo, neighborType=1, distanceBand=0.0, numNeighs=0, distanceType="euclidean", exponent=1.0, rowStandard=True, includeSelf=False): """Uses ArcGIS Neighborhood Searching Structure to create a PySAL Sparse Spatial Weights Matrix. INPUTS: ssdo (class): instance of SSDataObject [1] neighborType {int, 1}: 0 = inverse distance, 1 = fixed distance, 2 = k-nearest-neighbors, 3 = delaunay distanceBand {float, 0.0}: return all neighbors within this distance for inverse/fixed distance numNeighs {int, 0}: number of neighbors for k-nearest-neighbor, can also be used to set a minimum number of neighbors for inverse/fixed distance distanceType {str, euclidean}: manhattan or euclidean distance [2] exponent {float, 1.0}: distance decay factor for inverse distance rowStandard {bool, True}: whether to row standardize the spatial weights includeSelf {bool, False}: whether to return self as a neighbor NOTES: (1) Data must already be obtained using ssdo.obtainDataGA() (2) Chordal Distance is used for GCS Data """ neighbors = {} weights = {} gaSearch = GAPY.ga_nsearch(ssdo.gaTable) if neighborType == 3: gaSearch.init_delaunay() neighSearch = ARC._ss.NeighborWeights(ssdo.gaTable, gaSearch, weight_type=1) else: if neighborType == 2: distanceBand = 0.0 weightType = 1 else: weightType = neighborType concept, gaConcept = WU.validateDistanceMethod(distanceType.upper(), ssdo.spatialRef) gaSearch.init_nearest(distanceBand, numNeighs, gaConcept) neighSearch = ARC._ss.NeighborWeights(ssdo.gaTable, gaSearch, weight_type=weightType, exponent=exponent, include_self=includeSelf) for i in range(len(neighSearch)): neighOrderIDs, neighWeights = neighSearch[i] neighbors[i] = neighOrderIDs weights[i] = neighWeights w = PYSAL.W(neighbors, weights) if rowStandard: w.transform = 'R' return w
def polygon2SWM(inputFC, swmFile, masterField, concept = "EUCLIDEAN", kNeighs = 0, rowStandard = True, contiguityType = "ROOK"): """Creates a sparse spatial weights matrix (SWM) based on polygon contiguity. INPUTS: inputFC (str): path to the input feature class swmFile (str): path to the SWM file. masterField (str): field in table that serves as the mapping. concept: {str, EUCLIDEAN}: EUCLIDEAN or MANHATTAN kNeighs {int, 0}: number of neighbors to return (1) rowStandard {bool, True}: row standardize weights? contiguityType {str, Rook}: {Rook = Edges Only, Queen = Edges/Vertices} NOTES: (1) kNeighs is used if polygon is not contiguous. E.g. Islands """ #### Set Default Progressor for Neigborhood Structure #### ARCPY.SetProgressor("default", ARCPY.GetIDMessage(84143)) #### Create SSDataObject #### ssdo = SSDO.SSDataObject(inputFC, templateFC = inputFC, useChordal = True) cnt = UTILS.getCount(inputFC) ERROR.errorNumberOfObs(cnt, minNumObs = 2) #### Validation of Master Field #### verifyMaster = ERROR.checkField(ssdo.allFields, masterField, types = [0,1]) #### Create GA Data Structure #### gaTable, gaInfo = WU.gaTable(ssdo.catPath, [masterField], spatRef = ssdo.spatialRefString) #### Assure Enough Observations #### N = gaInfo[0] ERROR.errorNumberOfObs(N, minNumObs = 2) #### Assure k-Nearest is Less Than Number of Features #### if kNeighs >= N: ARCPY.AddIDMessage("ERROR", 975) raise SystemExit() #### Create Nearest Neighbor Search Type For Islands #### gaSearch = GAPY.ga_nsearch(gaTable) concept, gaConcept = WU.validateDistanceMethod(concept, ssdo.spatialRef) gaSearch.init_nearest(0.0, kNeighs, gaConcept) if kNeighs > 0: forceNeighbor = True neighWeights = ARC._ss.NeighborWeights(gaTable, gaSearch, weight_type = 1, row_standard = False) else: forceNeighbor = False neighSearch = None #### Create Polygon Neighbors #### polyNeighborDict = WU.polygonNeighborDict(inputFC, masterField, contiguityType = contiguityType) #### Write Poly Neighbor List (Dict) #### #### Set Progressor for SWM Writing #### ARCPY.SetProgressor("step", ARCPY.GetIDMessage(84127), 0, N, 1) #### Initialize Spatial Weights Matrix File #### if contiguityType == "ROOK": wType = 4 else: wType = 5 swmWriter = WU.SWMWriter(swmFile, masterField, ssdo.spatialRefName, N, rowStandard, inputFC = inputFC, wType = wType, distanceMethod = concept, numNeighs = kNeighs) #### Keep Track of Polygons w/o Neighbors #### islandPolys = [] #### Write Polygon Contiguity to SWM File #### for row in xrange(N): rowInfo = gaTable[row] oid = rowInfo[0] masterID = rowInfo[2] neighs = polyNeighborDict[masterID] if neighs: weights = [ 1. for nh in neighs ] isIsland = False else: isIsland = True islandPolys.append(oid) weights = [] #### Get Nearest Neighbor Based On Centroid Distance #### if isIsland and forceNeighbor: neighs, weights = neighWeights[row] neighs = [ gaTable[nh][2] for nh in neighs ] #### Add Weights Entry #### swmWriter.swm.writeEntry(masterID, neighs, weights) #### Set Progress #### ARCPY.SetProgressorPosition() #### Report on Features with No Neighbors #### countIslands = len(islandPolys) if countIslands: islandPolys.sort() if countIslands > 30: islandPolys = islandPolys[0:30] ERROR.warningNoNeighbors(N, countIslands, islandPolys, ssdo.oidName, forceNeighbor = forceNeighbor, contiguity = True) #### Clean Up #### swmWriter.close() del gaTable #### Report Spatial Weights Summary #### swmWriter.report() #### Report SWM File is Large #### swmWriter.reportLargeSWM() del polyNeighborDict