示例#1
0
def test_csd_tracking():
    for sh_order in [4, 8, 10]:
        fname = fit_csd(fdata, fbval, fbvec,
                        response=((0.0015, 0.0003, 0.0003), 100),
                        sh_order=8, lambda_=1, tau=0.1, mask=None,
                        out_dir=tmpdir.name)
        for directions in ["det", "prob"]:
            sl_serial = track(fname, directions,
                              max_angle=30., sphere=None,
                              seed_mask=None,
                              seeds=seeds,
                              stop_mask=None,
                              stop_threshold=0.2,
                              step_size=0.5,
                              n_jobs=1)
            npt.assert_equal(sl_serial[0].shape[-1], 3)
            for engine in ["dask"]:
                for backend in ["threading"]:
                    sl_parallel = track(fname, directions,
                                        max_angle=30., sphere=None,
                                        seed_mask=None,
                                        seeds=seeds,
                                        stop_mask=None,
                                        stop_threshold=0.2,
                                        step_size=0.5,
                                        n_jobs=2,
                                        engine=engine,
                                        backend=backend)
                    npt.assert_equal(sl_parallel[0].shape[-1], 3)

                    if directions == 'det':
                        npt.assert_almost_equal(sl_parallel[0], sl_serial[0])
示例#2
0
def test_fit_csd():
    fdata, fbval, fbvec = dpd.get_data('small_64D')
    with nbtmp.InTemporaryDirectory() as tmpdir:
        # Convert from npy to txt:
        bvals = np.load(fbval)
        bvecs = np.load(fbvec)
        np.savetxt(op.join(tmpdir, 'bvals.txt'), bvals)
        np.savetxt(op.join(tmpdir, 'bvecs.txt'), bvecs)
        for sh_order in [4, 6]:
            fname = csd.fit_csd(fdata, op.join(tmpdir, 'bvals.txt'),
                                op.join(tmpdir, 'bvecs.txt'),
                                out_dir=tmpdir, sh_order=sh_order)
            npt.assert_(op.exists(fname))
            sh_coeffs_img = nib.load(fname)
            npt.assert_equal(sh_order,
                             calculate_max_order(sh_coeffs_img.shape[-1]))
示例#3
0
def test_csd_tracking():
    for sh_order in [4, 8, 10]:
        fname = fit_csd(fdata, fbval, fbvec,
                        response=((0.0015, 0.0003, 0.0003), 100),
                        sh_order=8, lambda_=1, tau=0.1, mask=None,
                        out_dir=tmpdir.name)
        for directions in ["det", "prob"]:
            sl = track(fname, directions,
                       max_angle=30.,
                       sphere=None,
                       seed_mask=None,
                       seeds=seeds,
                       stop_mask=None,
                       step_size=0.5)

            npt.assert_(len(sl[0]) > 10)
示例#4
0
def test_csd_tracking():
    for sh_order in [4, 8, 10]:
        fname = fit_csd(fdata, fbval, fbvec,
                        response=((0.0015, 0.0003, 0.0003), 100),
                        sh_order=8, lambda_=1, tau=0.1, mask=None,
                        out_dir=tmpdir.name)
        for directions in ["det", "prob"]:
            sl = track(fname, directions,
                       max_angle=30.,
                       sphere=None,
                       seed_mask=None,
                       n_seeds=seeds,
                       stop_mask=None,
                       step_size=0.5,
                       min_length=10)

            npt.assert_(len(sl[0]) > 10)
示例#5
0
文件: test_csd.py 项目: soichih/pyAFQ
def test_fit_csd():
    fdata, fbval, fbvec = dpd.get_data('small_64D')
    with nbtmp.InTemporaryDirectory() as tmpdir:
        # Convert from npy to txt:
        bvals = np.load(fbval)
        bvecs = np.load(fbvec)
        np.savetxt(op.join(tmpdir, 'bvals.txt'), bvals)
        np.savetxt(op.join(tmpdir, 'bvecs.txt'), bvecs)
        for sh_order in [4, 6]:
            fname = csd.fit_csd(fdata,
                                op.join(tmpdir, 'bvals.txt'),
                                op.join(tmpdir, 'bvecs.txt'),
                                out_dir=tmpdir,
                                sh_order=sh_order)
            npt.assert_(op.exists(fname))
            sh_coeffs_img = nib.load(fname)
            npt.assert_equal(sh_order,
                             calculate_max_order(sh_coeffs_img.shape[-1]))
示例#6
0
def test_csd_tracking():
    for sh_order in [4, 8, 10]:
        fname = fit_csd(fdata,
                        fbval,
                        fbvec,
                        response=((0.0015, 0.0003, 0.0003), 100),
                        sh_order=8,
                        lambda_=1,
                        tau=0.1,
                        mask=None,
                        out_dir=tmpdir.name)
        for directions in ["det", "prob"]:
            sl_serial = track(fname,
                              directions,
                              max_angle=30.,
                              sphere=None,
                              seed_mask=None,
                              seeds=seeds,
                              stop_mask=None,
                              stop_threshold=0.2,
                              step_size=0.5,
                              n_jobs=1,
                              engine="serial")
            npt.assert_equal(sl_serial[0].shape[-1], 3)
            for engine in ["dask", "joblib"]:
                for backend in ["threading"]:
                    sl_parallel = track(fname,
                                        directions,
                                        max_angle=30.,
                                        sphere=None,
                                        seed_mask=None,
                                        seeds=seeds,
                                        stop_mask=None,
                                        stop_threshold=0.2,
                                        step_size=0.5,
                                        n_jobs=2,
                                        engine=engine,
                                        backend=backend)
                    npt.assert_equal(sl_parallel[0].shape[-1], 3)

                    if directions == 'det':
                        npt.assert_almost_equal(sl_parallel[0], sl_serial[0])