示例#1
0
文件: api.py 项目: RafaelNH/pyAFQ
def _tgramer(bundles, bundle_dict, affine):
    tgram = nib.streamlines.Tractogram([], {'bundle': []})
    for b in bundles:
        print("Segmenting: %s" % b)
        this_sl = list(bundles[b])
        this_tgram = nib.streamlines.Tractogram(
            this_sl,
            data_per_streamline={
                'bundle': (len(this_sl) * [bundle_dict[b]['uid']])
            },
            affine_to_rasmm=affine)
        tgram = aus.add_bundles(tgram, this_tgram)
    return tgram
示例#2
0
def clean_bundles(subses_dict, bundles_file, bundle_dict, clean_params,
                  tracking_params, segmentation_params):
    img = nib.load(subses_dict['dwi_file'])
    sft = load_tractogram(bundles_file, img, Space.VOX)
    img = nib.load(subses_dict['dwi_file'])

    start_time = time()
    tgram = nib.streamlines.Tractogram([], {'bundle': []})
    if clean_params['return_idx']:
        return_idx = {}

    for b in bundle_dict.keys():
        if b != "whole_brain":
            idx = np.where(
                sft.data_per_streamline['bundle'] == bundle_dict[b]['uid'])[0]
            this_tg = StatefulTractogram(sft.streamlines[idx], img, Space.VOX)
            this_tg = seg.clean_bundle(this_tg, **clean_params)
            if clean_params['return_idx']:
                this_tg, this_idx = this_tg
                idx_file = bundles_file.split('.')[0] + '.json'
                with open(idx_file) as ff:
                    bundle_idx = json.load(ff)["idx"][b]
                return_idx[b] = np.array(bundle_idx)[this_idx].tolist()
            this_tgram = nib.streamlines.Tractogram(
                this_tg.streamlines,
                data_per_streamline={
                    'bundle': (len(this_tg) * [bundle_dict[b]['uid']])
                },
                affine_to_rasmm=img.affine)
            tgram = aus.add_bundles(tgram, this_tgram)

    sft = StatefulTractogram(tgram.streamlines,
                             sft,
                             Space.VOX,
                             data_per_streamline=tgram.data_per_streamline)

    seg_args = get_default_args(seg.clean_bundle)
    for k in seg_args:
        if callable(seg_args[k]):
            seg_args[k] = seg_args[k].__name__

    meta = dict(source=bundles_file, Parameters=seg_args)

    if clean_params['return_idx']:
        meta["idx"] = return_idx

    meta["Timing"] = time() - start_time

    return sft, meta
示例#3
0
def test_add_bundles():
    t1 = nib.streamlines.Tractogram([
        np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 1], [0, 0, 1.5]]),
        np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 1, 1]])
    ])

    t2 = nib.streamlines.Tractogram([
        np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 1], [0, 0, 1.5]]),
        np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 1, 1]])
    ])

    added = aus.add_bundles(t1, t2)
    test_tgram = nib.streamlines.Tractogram([
        np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 1], [0, 0, 1.5]]),
        np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 1, 1]]),
        np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 1], [0, 0, 1.5]]),
        np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 1, 1]])
    ])

    for sl1, sl2 in zip(added.streamlines, test_tgram.streamlines):
        npt.assert_array_equal(sl1, sl2)
示例#4
0
文件: api.py 项目: akeshavan/pyAFQ
def _clean_bundles(row,
                   wm_labels,
                   bundle_dict,
                   reg_template,
                   odf_model="DTI",
                   directions="det",
                   n_seeds=2,
                   random_seeds=False,
                   force_recompute=False):
    clean_bundles_file = _get_fname(
        row, '%s_%s_clean_bundles.trk' % (odf_model, directions))
    if not op.exists(clean_bundles_file) or force_recompute:
        bundles_file = _bundles(row,
                                wm_labels,
                                bundle_dict,
                                reg_template,
                                odf_model=odf_model,
                                directions=directions,
                                n_seeds=n_seeds,
                                random_seeds=random_seeds,
                                force_recompute=False)
        tg = nib.streamlines.load(bundles_file).tractogram
        sl = tg.apply_affine(np.linalg.inv(row['dwi_affine'])).streamlines
        tgram = nib.streamlines.Tractogram([], {'bundle': []})
        for b in bundle_dict.keys():
            idx = np.where(
                tg.data_per_streamline['bundle'] == bundle_dict[b]['uid'])[0]
            this_sl = sl[idx]
            this_sl = seg.clean_fiber_group(this_sl)
            this_tgram = nib.streamlines.Tractogram(
                this_sl,
                data_per_streamline={
                    'bundle': (len(this_sl) * [bundle_dict[b]['uid']])
                },
                affine_to_rasmm=row['dwi_affine'])
            tgram = aus.add_bundles(tgram, this_tgram)
        nib.streamlines.save(tgram, clean_bundles_file)

    return clean_bundles_file
示例#5
0
文件: api.py 项目: Anneef/pyAFQ-1
    def _clean_bundles(self, row):
        odf_model = self.tracking_params['odf_model']
        directions = self.tracking_params['directions']
        seg_algo = self.segmentation_params['seg_algo']
        clean_bundles_file = self._get_fname(
            row, f'_space-RASMM_model-{odf_model}_desc-{directions}-'
            f'{seg_algo}-clean_tractography.trk')

        if self.force_recompute or not op.exists(clean_bundles_file):
            bundles_file = self._segment(row)

            sft = load_tractogram(bundles_file, row['dwi_img'], Space.VOX)

            tgram = nib.streamlines.Tractogram([], {'bundle': []})
            if self.clean_params['return_idx']:
                return_idx = {}

            for b in self.bundle_dict.keys():
                if b != "whole_brain":
                    idx = np.where(sft.data_per_streamline['bundle'] ==
                                   self.bundle_dict[b]['uid'])[0]
                    this_tg = StatefulTractogram(sft.streamlines[idx],
                                                 row['dwi_img'], Space.VOX)
                    this_tg = seg.clean_bundle(this_tg, **self.clean_params)
                    if self.clean_params['return_idx']:
                        this_tg, this_idx = this_tg
                        idx_file = bundles_file.split('.')[0] + '_idx.json'
                        with open(idx_file) as ff:
                            bundle_idx = json.load(ff)[b]
                        return_idx[b] = \
                            np.array(bundle_idx)[this_idx].tolist()
                    this_tgram = nib.streamlines.Tractogram(
                        this_tg.streamlines,
                        data_per_streamline={
                            'bundle':
                            (len(this_tg) * [self.bundle_dict[b]['uid']])
                        },
                        affine_to_rasmm=row['dwi_affine'])
                    tgram = aus.add_bundles(tgram, this_tgram)
            save_tractogram(
                StatefulTractogram(
                    tgram.streamlines,
                    sft,
                    Space.VOX,
                    data_per_streamline=tgram.data_per_streamline),
                clean_bundles_file)

            seg_args = get_default_args(seg.clean_bundle)
            for k in seg_args:
                if callable(seg_args[k]):
                    seg_args[k] = seg_args[k].__name__

            meta = dict(source=bundles_file, Parameters=seg_args)
            meta_fname = clean_bundles_file.split('.')[0] + '.json'
            afd.write_json(meta_fname, meta)

            if self.clean_params['return_idx']:
                afd.write_json(
                    clean_bundles_file.split('.')[0] + '_idx.json', return_idx)

        return clean_bundles_file