示例#1
0
    def test_build(self):
        builder = RandomDataSplitter(evaluation_data_perc=20, data_source=RandomDataSplitter.TRAINING_DATA)
        arti = mock.Mock('AIBuilder.AbstractAI')

        # mock training model
        data = {'col1': [1, 2, 3, 4, 5, 6, 7, 8, 9, 0],
                'col2': [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]}
        dataframe = pd.DataFrame(data=data)
        training_model = DataModel(dataframe)

        arti.get_training_data = mock.Mock()
        arti.get_training_data.return_value = training_model
        arti.set_training_data = mock.Mock()

        # mock evaluation model
        data = {'col1': [11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
                'col2': [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]}
        dataframe = pd.DataFrame(data=data)
        evaluation_model = DataModel(dataframe)

        arti.get_evaluation_data = mock.Mock()
        arti.get_evaluation_data.return_value = evaluation_model
        arti.set_evaluation_data = mock.Mock()

        builder.build(ml_model=arti)

        arti.set_evaluation_data.assert_called_once()
        arti.set_training_data.assert_called_once()

        split_evaluation_data = arti.set_evaluation_data.call_args[0][0].get_dataframe()
        split_training_data = arti.set_training_data.call_args[0][0].get_dataframe()

        self.assertEqual(2, len(split_evaluation_data))
        self.assertEqual(8, len(split_training_data))
示例#2
0
class TestDataSetSplitter(unittest.TestCase):
    def setUp(self):
        self._data = {
            'target': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
            'feature_1': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
            'feature_2': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
        }

        self._dataframe = pd.DataFrame(data=self._data)
        self._data_model = DataModel(self._dataframe)
        self._data_model.set_tf_feature_columns([
            tf.feature_column.numeric_column('feature_1'),
            tf.feature_column.numeric_column('feature_2')
        ])

        self._data_model.set_target_column('target')

    def test_split_data(self):
        splitter = DataSetSplitter(self._data_model)
        evaluation_data, train_data = splitter.split_by_ratio(ratios=[20, 80])

        train_features = train_data.get_feature_columns()
        train_target = train_data.get_target_column()

        eval_features = evaluation_data.get_feature_columns()
        eval_target = evaluation_data.get_target_column()

        self.assertEqual(len(train_target), 8)
        self.assertEqual(len(train_features), 8)
        self.assertEqual(len(eval_target), 2)
        self.assertEqual(len(eval_features), 2)
示例#3
0
class TestDataset(unittest.TestCase):
    def setUp(self):
        self._data = {'col1': [1, 2], 'col2': [3, 4], 'col4': [5, 6]}
        self._dataframe = pd.DataFrame(data=self._data)
        self._dataset = DataModel(self._dataframe)

    def test_validate_columns_invalid(self):
        with self.assertRaises(RuntimeError):
            self._dataset.validate_columns(['col3'])

    def test_validate_columns(self):
        self._dataset.validate_columns(['col1'])

    def test_feature_columns(self):
        intended_columns = ['col1', 'col2']
        self._dataset.set_feature_columns(intended_columns)

        feature_columns = self._dataset.get_feature_columns()
        result_columns = list(feature_columns.columns.values)

        self.assertEqual(result_columns, intended_columns)

    def test_target_column(self):
        intended_column = 'col1'
        self._dataset.set_target_column(intended_column)

        target_column = self._dataset.get_target_column()

        self.assertEqual(target_column.tolist(), self._data[intended_column])
示例#4
0
 def render_tf_feature_columns(self, data_model: DataModel):
     data_model.set_tf_feature_columns([])
     for feature_column_info in self.feature_columns():
         column_strategy = FeatureColumnStrategyFactory.get_strategy(
             feature_column_info['name'], feature_column_info['type'],
             data_model, self.feature_config())
         feature_columns = column_strategy.build()
         for tf_feature_column in feature_columns:
             data_model.add_tf_feature_columns(tf_feature_column)
示例#5
0
    def setUp(self):
        self._data = {
            'date': [
                '2017-03-26T05:04:46.539Z', '2017-12-01T23:04:46.539Z',
                '2017-02-08T07:38:48.129Z'
            ],
        }

        self._dataframe = pd.DataFrame(data=self._data)
        self.data_model = DataModel(self._dataframe)
示例#6
0
    def setUp(self):
        data = {
            'test': [['is', 'this', 'a', 'stemmable', 'sentence'],
                     ['cats', 'are', 'smarter', 'than', 'dogs']]
        }

        metadata = MetaData()
        self.df = pd.DataFrame(data)
        self.data_model = DataModel(self.df)
        self.data_model.metadata = metadata
示例#7
0
    def setUp(self):
        data = {
            'test': [['this', 'sentence', 'has', 'multiple', 'stopwords'],
                     ['this', 'sentence', 'one', 'multiple', 'too'],
                     ['verb', 'noun'], ['too', 'than', 'can']]
        }

        metadata = MetaData()
        self.df = pd.DataFrame(data)
        self.data_model = DataModel(self.df)
        self.data_model.metadata = metadata
示例#8
0
    def setUp(self):
        self._data = {
            'column_1': [0, 2, 3],
            'column_2': [3, 2, 1],
            'column_3': [3, 2, 2],
        }

        self._dataframe = pd.DataFrame(data=self._data)
        self._data_model = DataModel(self._dataframe)
        self._data_model.metadata.define_numerical_columns(
            ['column_1', 'column_2', 'column_3'])
示例#9
0
    def setUp(self):
        data = {
            'text': [
                'This is, some text.', 'Is this, (some) text!?',
                'Would you like: ham, spam and eggs; spam, ham and eggs or eggs, ham and spam?'
            ]
        }

        metadata = MetaData()
        self.df = pd.DataFrame(data)
        self.data_model = DataModel(self.df)
        self.data_model.metadata = metadata
示例#10
0
    def assign_fn(self, data_model: DataModel, fn_name: str, kwargs: dict):
        if hasattr(self.fn_holder, fn_name):
            return self.load_from_holder(data_model, fn_name, kwargs)

        if fn_name == self.PANDAS_FN:
            kwargs['x'] = data_model.get_input_fn_x_data()
            kwargs['y'] = data_model.get_target_column()
            kwargs['target_column'] = data_model.target_column_name

            fn = getattr(tf.estimator.inputs, 'pandas_input_fn')

            return fn(**kwargs)
示例#11
0
class StopWordScrubberTest(unittest.TestCase):
    def setUp(self):
        data = {
            'test': [['this', 'sentence', 'has', 'multiple', 'stopwords'],
                     ['this', 'sentence', 'one', 'multiple', 'too'],
                     ['verb', 'noun'], ['too', 'than', 'can']]
        }

        metadata = MetaData()
        self.df = pd.DataFrame(data)
        self.data_model = DataModel(self.df)
        self.data_model.metadata = metadata

    def test_scrubbing_new_column(self):
        scrubber = StopWordScrubber(column='test', new_column='test2')
        scrubber.scrub(self.data_model)

        df = self.data_model.get_dataframe()
        for row in df['test2']:
            self.assertFalse('this' in row)
            self.assertFalse('has' in row)
            self.assertFalse('too' in row)
            self.assertFalse('than' in row)
            self.assertFalse('can' in row)

        self.assertEqual(5, len(df['test'][0]))
        self.assertEqual(5, len(df['test'][1]))
        self.assertEqual(2, len(df['test'][2]))
        self.assertEqual(3, len(df['test'][3]))

    def test_scrubbing(self):
        scrubber = StopWordScrubber(column='test')
        scrubber.scrub(self.data_model)

        df = self.data_model.get_dataframe()
        for row in df['test']:
            self.assertFalse('this' in row)
            self.assertFalse('has' in row)
            self.assertFalse('too' in row)
            self.assertFalse('than' in row)
            self.assertFalse('can' in row)

    def test_verbose_scrubbing(self):
        scrubber = StopWordScrubber(column='test', verbosity=1)
        scrubber.scrub(self.data_model)

        df = self.data_model.get_dataframe()
        for row in df['test']:
            self.assertFalse('this' in row)
            self.assertFalse('has' in row)
            self.assertFalse('too' in row)
            self.assertFalse('than' in row)
            self.assertFalse('can' in row)
示例#12
0
    def setUp(self):
        self._data = {
            'numerical_1': [2, None, 3, 4],
            'numerical_3': [None, 2, 3, 4],
            'categorical_1': ['one', None, 'two', 'three'],
            'categorical_2': ['apple', 'pie', None, 'three'],
            'categorical_3': ['apple', 'pie', None, 'three'],
            'unknown_1': [9, 10, 11, 12]
        }

        self._dataframe = pd.DataFrame(data=self._data)
        self._data_model = DataModel(self._dataframe)
示例#13
0
    def setUp(self):
        data = {
            'text': [
                'This is some text.', 'Get some text ASAP?',
                'This is some text for John and Joan'
            ]
        }

        metadata = MetaData()
        self.df = pd.DataFrame(data)
        self.data_model = DataModel(self.df)
        self.data_model.metadata = metadata
示例#14
0
    def setUp(self):
        date_1 = datetime.strptime('01-01-2018', '%d-%m-%Y')
        date_2 = datetime.strptime('01-01-2017', '%d-%m-%Y')
        date_3 = datetime.now()

        self._data = {
            'value': [0, 2, 100],
            'currency': ['EUR', 'USD', 'EUR'],
            'date': [date_3, date_1, date_2],
        }

        self._dataframe = pd.DataFrame(data=self._data)
        self._data_model = DataModel(self._dataframe)
示例#15
0
class testHTMLScrubber(unittest.TestCase):
    def setUp(self):
        data = {
            'text': [
                '<p>this is some text</p>',
                '<h1 id="bla", class="blabla", style="transform: translatyeY(-50%)">this is some more text</h1>',
                '<p>and even <b>more</b> text, damn</p>',
                'this is my text (dont remove this)',
                "this is some text,  $('span#TrackingJobBody a').each(function (i, v) { if ($(v).attr('href')) { var href = $(v).attr('href').toLowerCase(); if (href.match(\"^http\")) { switch (true) { case /facebook/.test(href): $(v).attr('mns_rt', 'NonJob-Facebook'); break; case /linkedin/.test(href): $(v).attr('mns_rt', 'NonJob-Linkedin'); break; case /twitter\.com/.test(href): $(v).attr('mns_rt', 'NonJob-Twitter'); break; case /plus\.google\.com/.test(href): $(v).attr('mns_rt', 'NonJob-GooglePlus'); break; case /youtube/.test(href): $(v).attr('data-track', 'Client-Social-Youtube'); break; case /http[s]?\:\/\/([a-z0-9\-\.]{1,}\.[a-z]{2,})[\/]?$/.test(href): $(v).attr('data-track', 'Client-Link-Homepage'); break; default: $(v).attr('mns_rt', 'jobcustomapplyonline'); break; } } } });"
            ]
        }

        metadata = MetaData()
        self.df = pd.DataFrame(data)
        self.data_model = DataModel(self.df)
        self.data_model.metadata = metadata

    def testHTMLRemoval(self):
        scrubber = CodeScrubber('text')
        scrubber.scrub(self.data_model)

        df = self.data_model.get_dataframe()
        for text in df['text']:
            self.validate_string(text)

    def validate_string(self, text):
        print(text)
        self.assertFalse('>' in text)
        self.assertFalse('<' in text)
        self.assertFalse('{' in text)
        self.assertFalse('bla' in text)
        self.assertFalse('transform' in text)
        self.assertFalse('50%' in text)
        self.assertTrue('dont remove this' in text)

    def testHTMLRemoval_verbose(self):
        scrubber = CodeScrubber('text', verbosity=1)
        scrubber.scrub(self.data_model)

        df = self.data_model.get_dataframe()
        for text in df['text']:
            self.validate_string(text)

    def testHTMLRemoval_new_col(self):
        scrubber = CodeScrubber(text_column='text', new_text_column='new')
        scrubber.scrub(self.data_model)

        df = self.data_model.get_dataframe()
        for text in df['new']:
            self.validate_string(text)
示例#16
0
    def setUp(self):
        data = {
            'text': [
                '<p>this is some text</p>',
                '<h1 id="bla", class="blabla", style="transform: translatyeY(-50%)">this is some more text</h1>',
                '<p>and even <b>more</b> text, damn</p>',
                'this is my text (dont remove this)',
                "this is some text,  $('span#TrackingJobBody a').each(function (i, v) { if ($(v).attr('href')) { var href = $(v).attr('href').toLowerCase(); if (href.match(\"^http\")) { switch (true) { case /facebook/.test(href): $(v).attr('mns_rt', 'NonJob-Facebook'); break; case /linkedin/.test(href): $(v).attr('mns_rt', 'NonJob-Linkedin'); break; case /twitter\.com/.test(href): $(v).attr('mns_rt', 'NonJob-Twitter'); break; case /plus\.google\.com/.test(href): $(v).attr('mns_rt', 'NonJob-GooglePlus'); break; case /youtube/.test(href): $(v).attr('data-track', 'Client-Social-Youtube'); break; case /http[s]?\:\/\/([a-z0-9\-\.]{1,}\.[a-z]{2,})[\/]?$/.test(href): $(v).attr('data-track', 'Client-Link-Homepage'); break; default: $(v).attr('mns_rt', 'jobcustomapplyonline'); break; } } } });"
            ]
        }

        metadata = MetaData()
        self.df = pd.DataFrame(data)
        self.data_model = DataModel(self.df)
        self.data_model.metadata = metadata
示例#17
0
    def setUp(self):
        self._data = {
            'target': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
            'feature_1': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
            'feature_2': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
        }

        self._dataframe = pd.DataFrame(data=self._data)
        self._data_model = DataModel(self._dataframe)
        self._data_model.set_tf_feature_columns([
            tf.feature_column.numeric_column('feature_1'),
            tf.feature_column.numeric_column('feature_2')
        ])

        self._data_model.set_target_column('target')
示例#18
0
class testPunctuationScrubber(unittest.TestCase):
    def setUp(self):
        data = {
            'text': [
                'This is, some text.', 'Is this, (some) text!?',
                'Would you like: ham, spam and eggs; spam, ham and eggs or eggs, ham and spam?'
            ]
        }

        metadata = MetaData()
        self.df = pd.DataFrame(data)
        self.data_model = DataModel(self.df)
        self.data_model.metadata = metadata

    def test_punc_removal(self):
        scrubber = PunctuationScrubber('text')
        scrubber.scrub(self.data_model)

        df = self.data_model.get_dataframe()
        for text in df['text']:
            self.validate_string(text)

    def validate_string(self, text):
        self.assertFalse(',' in text)
        self.assertFalse('.' in text)
        self.assertFalse(';' in text)
        self.assertFalse(':' in text)
        self.assertFalse('!' in text)
        self.assertFalse('?' in text)
        self.assertFalse('(' in text)
        self.assertFalse(')' in text)

    def test_punc_removal_verbose(self):
        scrubber = PunctuationScrubber('text', verbosity=1)
        scrubber.scrub(self.data_model)

        df = self.data_model.get_dataframe()
        for text in df['text']:
            self.validate_string(text)

    def test_punc_removal_new_col(self):
        scrubber = PunctuationScrubber(text_column='text',
                                       new_text_column='new')
        scrubber.scrub(self.data_model)

        df = self.data_model.get_dataframe()
        for text in df['new']:
            self.validate_string(text)
示例#19
0
    def setUp(self):
        data = {
            'num_1': [0, 1, 2, 3, 4, 5, 6, 7, 8, 50],
            'mh_1': [
                'EUR,USD', 'USD,JPY,AUD', 'EUR', 'EUR,GBP,AUD', 'USD',
                'EUR,JPY', 'EUR,GBP', 'USD,JPY', 'EUR,GBP', 'USD'
            ],
        }

        metadata = MetaData()
        metadata.define_numerical_columns(['num_1'])
        metadata.define_multiple_cat_columns(['mh_1'])

        self.df = pd.DataFrame(data)
        self.data_model = DataModel(self.df)
        self.data_model.metadata = metadata
示例#20
0
    def setUp(self):
        data = {
            'num_1': [0, 1, 2, 3, 4, 5, 6, 7, 8, 50],
            'num_2': [0, 1, 2, 3, 4, 5, 6, 7, 8, 50],
            'cat_1': [
                'EUR', 'USD', 'EUR', 'EUR', 'USD', 'EUR', 'EUR', 'USD', 'EUR',
                'USD'
            ],
        }

        metadata = MetaData()
        metadata.define_numerical_columns(['num_1', 'num_2'])
        metadata.define_categorical_columns(['cat_1'])
        self.df = pd.DataFrame(data)
        self.data_model = DataModel(self.df)
        self.data_model.metadata = metadata
示例#21
0
def base_fn(data_model: Data.DataModel, batch_size=1, epoch=1):
    """ input function one, made for shoes AI.

    :param data_model: Data.MLDataset
    :param epoch: int
    :param batch_size: int
    :return:
    """

    features = _dataset_to_dict(features=data_model.get_feature_columns())

    data_set = tf.data.Dataset.from_tensor_slices(
        (features, data_model.get_target_column()))

    data_set = data_set.shuffle(100).repeat(epoch).batch(batch_size)

    return data_set.make_one_shot_iterator().get_next()
示例#22
0
    def balance_data(self, data_model: DataModel,
                     target_column_name: str) -> DataModel:
        weights_by_label = self.map_weights_by_cat_label(
            data_model, target_column_name)

        df = data_model.get_dataframe()
        weights = self.get_weights_list(df, target_column_name,
                                        weights_by_label)

        weights_column_warning = 'note: adding weights column ({}), make sure it is passed to the estimator- and ' \
                                 'data builder!'.format(WEIGHTS_COLUMN)
        warnings.warn(weights_column_warning)

        df[WEIGHTS_COLUMN] = weights
        data_model.set_dataframe(df)

        return data_model
示例#23
0
    def test_no_categories(self):
        builder = CategoricalDataSplitter(data_source='training', column_name='col2')

        training_model = DataModel(self.dataframe)
        self.arti.set_training_data(training_model)

        with self.assertRaises(AssertionError):
            self.arti = builder.build(ml_model=self.arti)
示例#24
0
    def setUp(self) -> None:
        self.builder = FeatureColumnBuilder(
            feature_columns={
                'col1': FeatureColumnStrategy.CATEGORICAL_COLUMN_VOC_LIST,
                'col3': FeatureColumnStrategy.NUMERICAL_COLUMN,
                'col4': FeatureColumnStrategy.INDICATOR_COLUMN_VOC_LIST,
                'col5': FeatureColumnStrategy.BUCKETIZED_COLUMN,
            },
            feature_config={'col5': {'buckets': 2}}
        )

        self.arti = mock.Mock('AIBuilder.AbstractAI')

        # mock training model
        data = {'col3': [1, 2, 3, 4, 5, 6, 7, 8, 9, 0],
                'col2': [1, 2, 3, 4, 5, 6, 7, 8, 9, 0],
                'col1': ['cat_one', 'cat_one', 'cat_one', 'cat_one', 'cat_one', 'cat_two', 'cat_one', 'cat_two',
                         'cat_one', 'cat_two'],
                'col4': [
                    ['cat_four', 'cat_three', 'cat_four'],
                    ['cat_two', 'cat_three', 'cat_four'],
                    ['cat_two', 'cat_three', 'cat_four'],
                    ['cat_two', 'cat_four'],
                    ['cat_one', 'cat_three', 'cat_four'],
                    ['cat_one', 'cat_three', 'cat_four'],
                    ['cat_one', 'cat_three'],
                    ['cat_one', 'cat_three', 'cat_four'],
                    ['cat_one', 'cat_two', 'cat_three'],
                    ['cat_two', 'cat_three'],
                ],
                'col5': [1, 2, 3, 4, 1, 2, 3, 4, 3, 4]}

        dataframe = pd.DataFrame(data=data)
        self.training_model = DataModel(dataframe)
        self.training_model.get_target_column = mock.Mock()
        self.training_model.get_target_column.return_value = 'col2'

        self.arti.get_training_data = mock.Mock()
        self.arti.get_training_data.return_value = self.training_model
        self.arti.set_training_data = mock.Mock()

        self.arti.get_evaluation_data = mock.Mock()
        self.arti.get_evaluation_data.return_value = None

        self.arti.get_prediction_data = mock.Mock()
        self.arti.get_prediction_data.return_value = None
示例#25
0
    def testScrubbing(self):
        data = {
            'num_1': [0, 1, 2, 3, 4, 5, 6, 7, 8, 50],
            'list_1': [['EUR', 'USD'], ['USD', 'JPY', 'AUD'], ['EUR'],
                       ['EUR', 'GBP', 'AUD'], ['USD'], ['EUR', 'JPY'],
                       ['EUR', 'GBP'], ['USD', 'JPY'], ['EUR', 'GBP'],
                       ['USD']],
        }

        metadata = MetaData()
        metadata.define_numerical_columns(['num_1'])
        metadata.define_multiple_cat_columns(['list_1'])

        self.df = pd.DataFrame(data)
        self.data_model = DataModel(self.df)
        self.data_model.metadata = metadata

        scrubber = MultipleCatListToMultipleHotScrubber(col_name='list_1')
        scrubber.validate(self.data_model)
        scrubber.scrub(self.data_model)

        new_df = self.data_model.get_dataframe()
        columns = list(new_df.columns.values)

        # test new columns
        self.assertEqual(len(columns), 7)
        self.assertIn('list_1_EUR', columns)
        self.assertIn('list_1_GBP', columns)
        self.assertIn('list_1_USD', columns)
        self.assertIn('list_1_JPY', columns)
        self.assertIn('list_1_AUD', columns)

        # check column contents
        has_EUR_series = new_df['list_1_EUR']
        self.assertEqual(list(has_EUR_series.to_dict().values()),
                         [1, 0, 1, 1, 0, 1, 1, 0, 1, 0])

        # test metadata
        meta_data_categorical_cols = self.data_model.metadata.binary_columns
        self.assertEqual(len(meta_data_categorical_cols), 5)
        self.assertIn('list_1_EUR', columns)
        self.assertIn('list_1_GBP', columns)
        self.assertIn('list_1_USD', columns)
        self.assertIn('list_1_JPY', columns)
        self.assertIn('list_1_AUD', columns)
示例#26
0
class WordStemmerTest(unittest.TestCase):
    def setUp(self):
        data = {
            'test': [['is', 'this', 'a', 'stemmable', 'sentence'],
                     ['cats', 'are', 'smarter', 'than', 'dogs']]
        }

        metadata = MetaData()
        self.df = pd.DataFrame(data)
        self.data_model = DataModel(self.df)
        self.data_model.metadata = metadata

    def test_scrubbing(self):
        scrubber = WordStemmer(column='test')
        scrubber.scrub(self.data_model)

        df = self.data_model.get_dataframe()
        self.assertEqual(df['test'][0],
                         ['is', 'this', 'a', 'stemmabl', 'sentenc'])
        self.assertEqual(df['test'][1],
                         ['cat', 'are', 'smarter', 'than', 'dog'])

    def test_scrubbing_verbose(self):
        scrubber = WordStemmer(column='test', verbosity=1)
        scrubber.scrub(self.data_model)

        df = self.data_model.get_dataframe()
        self.assertEqual(df['test'][0],
                         ['is', 'this', 'a', 'stemmabl', 'sentenc'])
        self.assertEqual(df['test'][1],
                         ['cat', 'are', 'smarter', 'than', 'dog'])

    def test_scrubbing_new_col(self):
        scrubber = WordStemmer(column='test', new_column='new')
        scrubber.scrub(self.data_model)

        df = self.data_model.get_dataframe()
        self.assertEqual(df['new'][0],
                         ['is', 'this', 'a', 'stemmabl', 'sentenc'])
        self.assertEqual(df['new'][1],
                         ['cat', 'are', 'smarter', 'than', 'dog'])
        self.assertEqual(df['test'][0],
                         ['is', 'this', 'a', 'stemmable', 'sentence'])
        self.assertEqual(df['test'][1],
                         ['cats', 'are', 'smarter', 'than', 'dogs'])
示例#27
0
    def setUp(self):
        date_1 = datetime.strptime('01-01-2018', '%d-%m-%Y')
        date_2 = datetime.strptime('01-01-2017', '%d-%m-%Y')
        date_3 = datetime.now()

        self._data = {
            'value_1': [0, 1, 50],
            'value_2': [0, 3, 150],
            'currency': ['EUR', 'USD', 'EUR'],
            'date': [date_3, date_1, date_2],
        }

        self._df = pd.DataFrame(self._data)
        self.data_model = DataModel(self._df)
        self.data_model.metadata.define_numerical_columns(
            ['value_1', 'value_2'])

        self.data_model.metadata.define_categorical_columns(['currency'])
示例#28
0
    def separate_by_target_categories(data_model: DataModel,
                                      target_column_name):
        df = data_model.get_dataframe()
        categories = df[target_column_name].unique()

        stack_one = df.loc[df[target_column_name] == categories[0]]
        stack_two = df.loc[df[target_column_name] == categories[1]]

        return stack_one, stack_two
示例#29
0
    def balance_data(self, data_model: DataModel,
                     target_column_name: str) -> DataModel:
        long_stack, short_stack = self.prepare_data(
            data_model=data_model, target_column_name=target_column_name)

        length_to_have = len(long_stack)

        duplicate_short_stack = short_stack.copy()
        while len(short_stack) < length_to_have:
            short_stack = pd.concat([short_stack, duplicate_short_stack])

        short_stack = self.cut_df_to_length(short_stack, length_to_have)

        self.validate_result(long_stack, short_stack)

        new_df = self.merge_stacks(long_stack, short_stack)
        data_model.set_dataframe(new_df)

        return data_model
示例#30
0
 def setUp(self):
     data = {
         'num_1': [0, 1, 2, 3, 4, 5, 6, 7, 8, 50],
         'num_2': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
     }
     metadata = MetaData()
     metadata.define_numerical_columns(['num_1', 'num_2'])
     self.df = pd.DataFrame(data)
     self.data_model = DataModel(self.df)
     self.data_model.metadata = metadata