ths_unq = _N.unique(ths) interiorPts = _N.setdiff1d(_N.arange(len(x)), ths_unq) #print("%(ths)d" % {"ths" : len(ths)}) return _ss.pearsonr(x[interiorPts], y[interiorPts]) # (12) # (13) # possible 2-patterns # oldnew = "new" if oldnew == "old": dates = _rt.date_range(start='7/13/2021', end='08/17/2021') elif oldnew == "new": dates = _rt.date_range(start='08/18/2021', end='10/30/2021') partIDs, dats, cnstrs = _rt.filterRPSdats("TMB1", dates, visits=[1], domainQ=_rt._TRUE_ONLY_, demographic=_rt._TRUE_AND_FALSE_, mentalState=_rt._TRUE_AND_FALSE_, minIGI=300, maxIGI=30000, MinWinLossRat=0., has_useragent=True, has_start_and_end_times=True, has_constructor=True, blocks=4) pid = 0 netwins = _N.empty((4, len(partIDs))) win_aft_win = _N.empty((4, len(partIDs))) win_aft_los = _N.empty((4, len(partIDs))) win_aft_tie = _N.empty((4, len(partIDs))) netwin_aft_win = _N.empty((4, len(partIDs))) netwin_aft_los = _N.empty((4, len(partIDs))) netwin_aft_tie = _N.empty((4, len(partIDs))) tie_aft_win = _N.empty((4, len(partIDs)))
#partIDs7=["20201122_1108-25", "20201121_1959-30", "20201121_2131-38"] #partIDs7 = ["20200410_2203-19", "20200410_2248-43", "20200415_2034-12", "20200418_2148-58"] #partIDs7 = ["20200410_2248-43"] if data == "EEG1": partIDs = partIDs1 + partIDs2 + partIDs3 + partIDs4 + partIDs5 + partIDs6# + partIDs7 if data == "RAND": USE = 43 _partIDs = os.listdir("/Users/arai/Sites/taisen/DATA/RAND/20210803") partIDs = [] these = _N.random.choice(_N.arange(len(_partIDs)), USE) for i in range(USE): partIDs.append(_partIDs[these[i]]) if data == "TMB2": dates = _rt.date_range(start='7/13/2021', end='08/30/2021') #dates = _rt.date_range(start='7/13/2021', end='07/27/2021') #dates = _rt.date_range(start='7/27/2021', end='08/20/2021') #dates = _rt.date_range(start='07/27/2021', end='08/20/2021') #dates = _rt.date_range(start='07/13/2021', end='07/27/2021') #partIDs, dats, cnstrs = _rt.filterRPSdats(data, dates, visits=[1], domainQ=_rt._TRUE_AND_FALSE_, demographic=_rt._TRUE_AND_FALSE_, mentalState=_rt._TRUE_AND_FALSE_, minIGI=800, MinWinLossRat=0.7, has_useragent=True, has_start_and_end_times=True, has_constructor=True, blocks=1) #partIDs, dats, cnstrs = _rt.filterRPSdats(data, dates, visits=[1], domainQ=_rt._TRUE_ONLY_, demographic=_rt._TRUE_AND_FALSE_, mentalState=_rt._TRUE_AND_FALSE_, minIGI=800, MinWinLossRat=0.7, has_useragent=True, has_start_and_end_times=True, has_constructor=True, blocks=1) partIDs, dats, cnstrs = _rt.filterRPSdats(data, dates, visits=[1], domainQ=(_rt._TRUE_ONLY_ if look_at_AQ else _rt._TRUE_AND_FALSE_), demographic=_rt._TRUE_AND_FALSE_, mentalState=_rt._TRUE_AND_FALSE_, minIGI=650, maxIGI=30000, MinWinLossRat=0.3, has_useragent=True, has_start_and_end_times=True, has_constructor=True, blocks=1) A1 = [] show_shuffled = False process_keyval_args(globals(), sys.argv[1:]) ####################################################### MULT = 1. # kernel width fxdGK = None
sys.exit() if sys.argv[1] == "TMB2": expt = sys.argv[1] else: expt = "TMB1" old_TMB1 = False if sys.argv[1] == "TMB1_o": old_TMB1 = True ####################################### ####################################### where TMB1 and TMB2 directories are zipped_dir = "/Users/arai/Sites/taisen/DATA/%s" % expt #dates = ["20210723"] dates = _rt.date_range(start='7/13/2021', end='12/30/2022') if (expt == "TMB1"): if old_TMB1: dates = _rt.date_range(start='7/13/2021', end='8/17/2021') else: dates = _rt.date_range(start='8/18/2021', end='11/30/2021') #dates = pd.date_range(start='7/1/2021', end='7/31/2021') for date in dates: # _date = "%(yr)d%(mn)2d%(dy)2d" % {"yr" : date_tmstmp.year, "mn" : date_tmstmp.month, "dy" : date_tmstmp.day} # date = _date.replace(" ", "0") hr = 0 mn = 0
_ME_WTL = 0 _ME_RPS = 1 _SHFL_KEEP_CONT = 0 _SHFL_NO_KEEP_CONT = 1 def depickle(s): import pickle with open(s, "rb") as f: lm = pickle.load(f) return lm #dates = _rt.date_range(start='7/13/2021', end='8/17/2021') dates = _rt.date_range(start='8/18/2021', end='11/30/2021') nicknames = { "FixedSequence(__moRSP__, " + "[1, 1, 2, 1, 3, 1, 1, 1, 1, 3, " + "1, 1, 2, 1, 1, 1, 1, 1, 1, 3, " + "1, 1, 2, 1, 1, 3, 1, 2, 1, 1, " + "2, 1, 1, 1, 3, 1, 1, 1, 1, 1]);": "Biased_Random", # "FixedSequencen(__moRSP__, " + "[3, 1, 2, 3, 2, 1, 2, 3, 3, 1, " + "1, 1, 2, 1, 3, 3, 2, 1, 2, 3, " + "3, 1, 2, 1, 2, 1, 3, 2, 2, 3, " + "2, 1, 3, 3, 2, 2, 3, 1, 3, 1]);": "Unbiased_Random", # "WTL(__moRSP__, " + "[0.05, 0.85, 0.1], [1/3, 1/3, 1/3], [1/3, 1/3, 1/3], false);": "Exploitable_Win", # "Mimic(__moRSP__, 0, 0.2);": "Mimic" }
import AIiRPS.constants as _cnst from AIiRPS.utils.dir_util import getResultFN import GCoh.datconfig as datconf def depickle(s): import pickle with open(s, "rb") as f: lm = pickle.load(f) return lm data = "TMB2" if data == "TMB1": dates = _rt.date_range(start='7/13/2021', end='11/10/2021') partIDs, dats, cnstrs = _rt.filterRPSdats(data, dates, visits=[1], domainQ=_rt._TRUE_AND_FALSE_, demographic=_rt._TRUE_ONLY_, mentalState=_rt._TRUE_AND_FALSE_, minIGI=400, maxIGI=30000, MinWinLossRat=0.1, has_useragent=True, has_start_and_end_times=True, has_constructor=True, blocks=4) if data == "TMB2": dates = _rt.date_range(start='7/13/2021', end='11/10/2021')