示例#1
0
def getAccStat(rankSumTuple, nDesc, train, randTest, extTest, resultsFid,
               projectName):

    print "Select features based on top ranked features"
    attrList = []
    for elem in rankSumTuple:
        if len(attrList) < nDesc:
            attrList.append(elem[0])
    train = dataUtilities.attributeSelectionData(train, attrList)
    train = dataUtilities.attributeDeselectionData(
        train, ['HLM_XEN025;Mean;CLint (uL/min/mg);(Num)'])

    print train.domain.attributes, len(
        train.domain.attributes), train.domain.classVar

    # Get accuracies
    learners = [AZorngRF.RFLearner(nTrees=100)]
    print "CV accuracy"
    MCC_CV = printCV(train, learners, resultsFid, projectName)
    Model = learners[0](train)
    print "Random Test set accuracy"
    MCC_rand = printTestSetAcc(Model, randTest, learners, resultsFid,
                               projectName, True)
    print "External Test set accuracy"
    MCC_ext = printTestSetAcc(Model, extTest, learners, resultsFid,
                              projectName, False)

    return MCC_CV, MCC_rand, MCC_ext
示例#2
0
def buildConsensus(trainData, learners, MLMethods, logFile = None):
        log(logFile, "Building a consensus model based on optimized MLmethods: "+str([ml for ml in MLMethods])+"...")
        if trainData.domain.classVar.varType == orange.VarTypes.Discrete:
            #Expression: If  CAavg_{POS} ge CAavg_{NEG} -> POS  else -> NEG 
            #    where CAavg_{POS} is the average of classification accuracies of all models predicting POS.
            CLASS0 = str(trainData.domain.classVar.values[0])
            CLASS1 = str(trainData.domain.classVar.values[1])
            #exprTest0
            exprTest0 = "(0"
            for ml in MLMethods:
                exprTest0 += "+( "+ml+" == "+CLASS0+" )*"+str(MLMethods[ml]["optAcc"])+" "
            exprTest0 += ")/IF0(sum([False"
            for ml in MLMethods:
                exprTest0 += ", "+ml+" == "+CLASS0+" "
            exprTest0 += "]),1)"
            # exprTest1
            exprTest1 = "(0"
            for ml in MLMethods:
                exprTest1 += "+( "+ml+" == "+CLASS1+" )*"+str(MLMethods[ml]["optAcc"])+" "
            exprTest1 += ")/IF0(sum([False"
            for ml in MLMethods:
                exprTest1 += ", "+ml+" == "+CLASS1+" "
            exprTest1 += "]),1)"
            # expression
            expression = [exprTest0+" >= "+exprTest1+" -> "+CLASS0," -> "+CLASS1]
        else:
            Q2sum = sum([MLMethods[ml]["optAcc"] for ml in MLMethods])
            expression = "(1 / "+str(Q2sum)+") * (0"
            for ml in MLMethods:
                expression += " + "+str(MLMethods[ml]["optAcc"])+" * " + ml +" "
            expression += ")" 

        consensusLearners = {}
        for learnerName in learners:
            consensusLearners[learnerName] = learners[learnerName]
        
        learner = AZorngConsensus.ConsensusLearner(learners = consensusLearners, expression = expression)
        log(logFile, "  Training Consensus Learner")
        smilesAttr = dataUtilities.getSMILESAttr(trainData)
        if smilesAttr:
            log(logFile,"Found SMILES attribute:"+smilesAttr)
            if learner.specialType == 1:
               trainData = dataUtilities.attributeSelectionData(trainData, [smilesAttr, trainData.domain.classVar.name])
               log(logFile,"Selected attrs: "+str([attr.name for attr in trainData.domain]))
            else:
               trainData = dataUtilities.attributeDeselectionData(trainData, [smilesAttr])
               log(logFile,"Selected attrs: "+str([attr.name for attr in trainData.domain[0:3]] + ["..."] +\
                                              [attr.name for attr in trainData.domain[len(trainData.domain)-3:]]))

        return learner(trainData)
示例#3
0
def filterDesc(data, zeroFracT = 0.95, LowVarT = 0.01, HighCorrT = 0.95):

    print "Initial number of descriptors ", len(data.domain.attributes)

    # Find the descriptors for which the fraction of zeros is smaller than zeroFracT - keep these
    attrList = []
    rmAttrList = []
    for attr in data.domain.attributes:
        valueList = []
        nZero = 0
        for ex in data:
            value = ex[attr.name].value
            if value == 0:
                nZero = nZero + 1
            valueList.append(value)
        zeroFrac = float(nZero)/len(valueList)
        if zeroFrac < zeroFracT:
            attrList.append(attr.name)
        else:
            rmAttrList.append(attr.name)
    print "Descriptors deselected because of a large fraction of zeros: "
    print rmAttrList
    data = dataUtilities.attributeSelectionData(data, attrList)
    print "Remaining number of descriptors ", len(data.domain.attributes)

    # Filter descriptors based on normalized variance
    rmAttrList = []
    for attr in data.domain.attributes:
        valueList = []
        for ex in data:
            value = ex[attr.name].value
            valueList.append(value)
        variance = numpy.var(valueList)
        mean = numpy.mean(valueList)
        normVar = variance/mean
        if normVar < LowVarT:
            rmAttrList.append(attr.name)
        
    print "Descriptors deselected because of low variance "
    print rmAttrList
    data = dataUtilities.attributeDeselectionData(data, rmAttrList)
    print "Remaining number of descriptors ", len(data.domain.attributes)
    
    print "Correlation filter not implemented yet"

    return data
示例#4
0
def buildModel(trainData,
               MLMethod,
               queueType="NoSGE",
               verbose=0,
               logFile=None):
    """
        Buld the method passed in MLMethod and optimize ( "IndividualStatistics"  not in MLMethod)
        if MLMethod is a Consensus ("individualStatistics"  in MLMethod) , build each and optimize first all models and after build the consensus!
        """
    log(logFile,
        "Building and optimizing learner: " + MLMethod["MLMethod"] + "...")
    learners = {}
    MLMethods = {}
    if "IndividualStatistics" in MLMethod:  #It is a consensus and will certaily not contain any
        #special model as it was filtered in the getUnbiasedAcc
        for ML in MLMethod["IndividualStatistics"]:
            MLMethods[ML] = copy.deepcopy(MLMethod["IndividualStatistics"][ML])
    else:
        ML = MLMethod["MLMethod"]
        if MLMETHODS[ML](
                name=ML
        ).specialType == 1:  # If is a special model and has a built-in optimizaer
            log(logFile, "       This is a special model")
            smilesAttr = dataUtilities.getSMILESAttr(trainData)
            if smilesAttr:
                log(logFile, "Found SMILES attribute:" + smilesAttr)
                trainData = dataUtilities.attributeSelectionData(
                    trainData, [smilesAttr, trainData.domain.classVar.name])
            optInfo, SpecialModel = MLMETHODS[ML](name=ML).optimizePars(
                trainData, folds=5)
            return SpecialModel
        else:
            MLMethods[MLMethod["MLMethod"]] = MLMethod

    smilesAttr = dataUtilities.getSMILESAttr(trainData)
    if smilesAttr:
        trainData = dataUtilities.attributeDeselectionData(
            trainData, [smilesAttr])

    # optimize all MLMethods
    for ML in MLMethods:
        log(logFile, "  Optimizing MLmethod: " + ML)
        learners[ML] = MLMETHODS[ML](name=ML)

        runPath = miscUtilities.createScratchDir(
            baseDir=AZOC.NFS_SCRATCHDIR, desc="competitiveWorkflow_BuildModel")
        trainData.save(os.path.join(runPath, "trainData.tab"))

        tunedPars = paramOptUtilities.getOptParam(learner=learners[ML],
                                                  trainDataFile=os.path.join(
                                                      runPath,
                                                      "trainData.tab"),
                                                  useGrid=False,
                                                  verbose=verbose,
                                                  queueType=queueType,
                                                  runPath=runPath,
                                                  nExtFolds=None,
                                                  logFile=logFile,
                                                  getTunedPars=True)

        if not learners[ML].optimized:
            print "WARNING: competitiveWorkflow: The learner " + str(
                learners[ML]) + " was not optimized."
            #print "         Using default parameters"
            print "         The " + str(learners[ML]) + " will not be included"
            #print "         Returning None"
            print "             DEBUG can be made in: " + runPath
            #Setting default parameters
            #learners[ML] = learners[ML].__class__()
            #return None
            learners.pop(ML)
            continue
        else:
            print "Optimized learner ", learners[ML]
            if trainData.domain.classVar.varType == orange.VarTypes.Discrete:
                MLMethods[ML]["optAcc"] = tunedPars[0]
            else:
                res = orngTest.crossValidation(
                    [learners[ML]],
                    trainData,
                    folds=5,
                    strat=orange.MakeRandomIndices.StratifiedIfPossible,
                    randomGenerator=random.randint(0, 100))
                R2 = evalUtilities.R2(res)[0]
                MLMethods[ML]["optAcc"] = R2
            miscUtilities.removeDir(runPath)
    #Train the model
    if len(learners) == 1:
        log(logFile, "  Building the model:" + learners.keys()[0])
        model = learners[learners.keys()[0]](trainData)
    elif len(learners) >= 1:
        model = buildConsensus(trainData, learners, MLMethods)
    else:
        print "ERROR: No Learners were selected!"
        return None

    return model
示例#5
0
def buildConsensus(trainData, learners, MLMethods, logFile=None):
    log(
        logFile, "Building a consensus model based on optimized MLmethods: " +
        str([ml for ml in MLMethods]) + "...")
    if trainData.domain.classVar.varType == orange.VarTypes.Discrete:
        #Expression: If  CAavg_{POS} ge CAavg_{NEG} -> POS  else -> NEG
        #    where CAavg_{POS} is the average of classification accuracies of all models predicting POS.
        CLASS0 = str(trainData.domain.classVar.values[0])
        CLASS1 = str(trainData.domain.classVar.values[1])
        #exprTest0
        exprTest0 = "(0"
        for ml in MLMethods:
            exprTest0 += "+( " + ml + " == " + CLASS0 + " )*" + str(
                MLMethods[ml]["optAcc"]) + " "
        exprTest0 += ")/IF0(sum([False"
        for ml in MLMethods:
            exprTest0 += ", " + ml + " == " + CLASS0 + " "
        exprTest0 += "]),1)"
        # exprTest1
        exprTest1 = "(0"
        for ml in MLMethods:
            exprTest1 += "+( " + ml + " == " + CLASS1 + " )*" + str(
                MLMethods[ml]["optAcc"]) + " "
        exprTest1 += ")/IF0(sum([False"
        for ml in MLMethods:
            exprTest1 += ", " + ml + " == " + CLASS1 + " "
        exprTest1 += "]),1)"
        # expression
        expression = [
            exprTest0 + " >= " + exprTest1 + " -> " + CLASS0, " -> " + CLASS1
        ]
    else:
        Q2sum = sum([MLMethods[ml]["optAcc"] for ml in MLMethods])
        expression = "(1 / " + str(Q2sum) + ") * (0"
        for ml in MLMethods:
            expression += " + " + str(
                MLMethods[ml]["optAcc"]) + " * " + ml + " "
        expression += ")"

    consensusLearners = {}
    for learnerName in learners:
        consensusLearners[learnerName] = learners[learnerName]

    learner = AZorngConsensus.ConsensusLearner(learners=consensusLearners,
                                               expression=expression)
    log(logFile, "  Training Consensus Learner")
    smilesAttr = dataUtilities.getSMILESAttr(trainData)
    if smilesAttr:
        log(logFile, "Found SMILES attribute:" + smilesAttr)
        if learner.specialType == 1:
            trainData = dataUtilities.attributeSelectionData(
                trainData, [smilesAttr, trainData.domain.classVar.name])
            log(
                logFile, "Selected attrs: " +
                str([attr.name for attr in trainData.domain]))
        else:
            trainData = dataUtilities.attributeDeselectionData(
                trainData, [smilesAttr])
            log(logFile,"Selected attrs: "+str([attr.name for attr in trainData.domain[0:3]] + ["..."] +\
                                           [attr.name for attr in trainData.domain[len(trainData.domain)-3:]]))

    return learner(trainData)
示例#6
0
    print "Number of attributes ", nAttr
    print "Maximum number of desc combinations ", pow(2, nAttr)
    print "Ndesc must be lower than the max number of desc combinations"
    print NdescComb

    # Randomly sample Ndesc combinations
    attrList = getDescComb(data, nAttr, NdescComb)

    # Rank the accuracy of each descriptor by averaging the accuracy of all models including a descriptor

    # Select all descriptors above median accuracy and repeat the random sampling of desc combinations

    return attrList


if __name__ == "__main__":

    dataFile = "trainDataAllEP.txt"
    data = dataUtilities.DataTable(dataFile)

    attrList = [
        "IT03423_Seq_BF", "hERG_IW_pIC50", "IT03423_BF", "IT03423_perc101_BF",
        "Caco2_intrinsic", "ACDlogD74", "Conc_QTc", "IT03713_BF", "IT10850_BF",
        "IT22015_BF", "IT22016_BF"
    ]
    data = dataUtilities.attributeSelectionData(data, attrList)

    NdescComb = 100  # Number of desc combinations to sample in the first iteration
    attrList = descSelection(data, NdescComb)
    print attrList
示例#7
0
    def getAcc(self, callBack = None, callBackWithFoldModel = None):
        """ For regression problems, it returns the RMSE and the Q2 
            For Classification problems, it returns CA and the ConfMat
            The return is made in a Dict: {"RMSE":0.2,"Q2":0.1,"CA":0.98,"CM":[[TP, FP],[FN,TN]]}
            For the EvalResults not supported for a specific learner/datase, the respective result will be None

            if the learner is a dict {"LearnerName":learner, ...} the results will be a dict with results for all Learners and for a consensus
                made out of those that were stable

            It some error occurred, the respective values in the Dict will be None
        """
        self.__log("Starting Calculating MLStatistics")
        statistics = {}
        if not self.__areInputsOK():
            return None
        # Set the response type
        self.responseType =  self.data.domain.classVar.varType == orange.VarTypes.Discrete and "Classification"  or "Regression"
        self.__log("  "+str(self.responseType))

        #Create the Train and test sets
        if self.usePreDefFolds:
            DataIdxs = self.preDefIndices 
        else:
            DataIdxs = self.sampler(self.data, self.nExtFolds) 
        foldsN = [f for f in dict.fromkeys(DataIdxs) if f != 0] #Folds used only from 1 on ... 0 are for fixed train Bias
        nFolds = len(foldsN)
        #Fix the Indexes based on DataIdxs
        # (0s) represents the train set  ( >= 1s) represents the test set folds
        if self.useVarCtrlCV:
            nShifted = [0] * nFolds
            for idx,isTest in enumerate(self.preDefIndices):  # self.preDefIndices == 0 are to be used in TrainBias
                if not isTest:
                    if DataIdxs[idx]:
                        nShifted[DataIdxs[idx]] += 1
                        DataIdxs[idx] = 0
            for idx,shift in enumerate(nShifted):
                self.__log("In fold "+str(idx)+", "+str(shift)+" examples were shifted to the train set.")

        #Var for saving each Fols result
        optAcc = {}
        results = {}
        exp_pred = {}
        nTrainEx = {}
        nTestEx = {}
        
        #Set a dict of learners
        MLmethods = {}
        if type(self.learner) == dict:
            for ml in self.learner:
                MLmethods[ml] = self.learner[ml]
        else:
            MLmethods[self.learner.name] = self.learner

        models={}
        self.__log("Calculating Statistics for MLmethods:")
        self.__log("  "+str([x for x in MLmethods]))

        #Check data in advance so that, by chance, it will not faill at the last fold!
        for foldN in foldsN:
            trainData = self.data.select(DataIdxs,foldN,negate=1)
            self.__checkTrainData(trainData)

        #Optional!!
        # Order Learners so that PLS is the first
        sortedML = [ml for ml in MLmethods]
        if "PLS" in sortedML:
            sortedML.remove("PLS")
            sortedML.insert(0,"PLS")

        stepsDone = 0
        nTotalSteps = len(sortedML) * self.nExtFolds  
        for ml in sortedML:
          startTime = time.time()
          self.__log("    > "+str(ml)+"...")
          try:
            #Var for saving each Fols result
            results[ml] = []
            exp_pred[ml] = []
            models[ml] = []
            nTrainEx[ml] = []
            nTestEx[ml] = []
            optAcc[ml] = []
            logTxt = ""
            for foldN in foldsN:
                if type(self.learner) == dict:
                    self.paramList = None

                trainData = self.data.select(DataIdxs,foldN,negate=1)
                testData = self.data.select(DataIdxs,foldN)
                smilesAttr = dataUtilities.getSMILESAttr(trainData)
                if smilesAttr:
                    self.__log("Found SMILES attribute:"+smilesAttr)
                    if MLmethods[ml].specialType == 1:
                       trainData = dataUtilities.attributeSelectionData(trainData, [smilesAttr, trainData.domain.classVar.name]) 
                       testData = dataUtilities.attributeSelectionData(testData, [smilesAttr, testData.domain.classVar.name]) 
                       self.__log("Selected attrs: "+str([attr.name for attr in trainData.domain]))
                    else:
                       trainData = dataUtilities.attributeDeselectionData(trainData, [smilesAttr]) 
                       testData = dataUtilities.attributeDeselectionData(testData, [smilesAttr]) 
                       self.__log("Selected attrs: "+str([attr.name for attr in trainData.domain[0:3]] + ["..."] + [attr.name for attr in trainData.domain[len(trainData.domain)-3:]]))

                nTrainEx[ml].append(len(trainData))
                nTestEx[ml].append(len(testData))
                #Test if trainsets inside optimizer will respect dataSize criterias.
                #  if not, don't optimize, but still train the model
                dontOptimize = False
                if self.responseType != "Classification" and (len(trainData)*(1-1.0/self.nInnerFolds) < 20):
                    dontOptimize = True
                else:                      
                    tmpDataIdxs = self.sampler(trainData, self.nInnerFolds)
                    tmpTrainData = trainData.select(tmpDataIdxs,1,negate=1)
                    if not self.__checkTrainData(tmpTrainData, False):
                        dontOptimize = True

                SpecialModel = None
                if dontOptimize:
                    logTxt += "       Fold "+str(foldN)+": Too few compounds to optimize model hyper-parameters\n"
                    self.__log(logTxt)
                    if trainData.domain.classVar.varType == orange.VarTypes.Discrete:
                        res = evalUtilities.crossValidation([MLmethods[ml]], trainData, folds=5, stratified=orange.MakeRandomIndices.StratifiedIfPossible, random_generator = random.randint(0, 100))
                        CA = evalUtilities.CA(res)[0]
                        optAcc[ml].append(CA)
                    else:
                        res = evalUtilities.crossValidation([MLmethods[ml]], trainData, folds=5, stratified=orange.MakeRandomIndices.StratifiedIfPossible, random_generator = random.randint(0, 100))
                        R2 = evalUtilities.R2(res)[0]
                        optAcc[ml].append(R2)
                else:
                    if MLmethods[ml].specialType == 1: 
                            if trainData.domain.classVar.varType == orange.VarTypes.Discrete:
                                    optInfo, SpecialModel = MLmethods[ml].optimizePars(trainData, folds = 5)
                                    optAcc[ml].append(optInfo["Acc"])
                            else:
                                    res = evalUtilities.crossValidation([MLmethods[ml]], trainData, folds=5, stratified=orange.MakeRandomIndices.StratifiedIfPossible, random_generator = random.randint(0, 100))
                                    R2 = evalUtilities.R2(res)[0]
                                    optAcc[ml].append(R2)
                    else:
                            runPath = miscUtilities.createScratchDir(baseDir = AZOC.NFS_SCRATCHDIR, desc = "AccWOptParam", seed = id(trainData))
                            trainData.save(os.path.join(runPath,"trainData.tab"))
                            tunedPars = paramOptUtilities.getOptParam(
                                learner = MLmethods[ml], 
                                trainDataFile = os.path.join(runPath,"trainData.tab"), 
                                paramList = self.paramList, 
                                useGrid = False, 
                                verbose = self.verbose, 
                                queueType = self.queueType, 
                                runPath = runPath, 
                                nExtFolds = None, 
                                nFolds = self.nInnerFolds,
                                logFile = self.logFile,
                                getTunedPars = True,
                                fixedParams = self.fixedParams)
                            if not MLmethods[ml] or not MLmethods[ml].optimized:
                                self.__log("       WARNING: GETACCWOPTPARAM: The learner "+str(ml)+" was not optimized.")
                                self.__log("                It will be ignored")
                                #self.__log("                It will be set to default parameters")
                                self.__log("                    DEBUG can be done in: "+runPath)
                                #Set learner back to default 
                                #MLmethods[ml] = MLmethods[ml].__class__()
                                raise Exception("The learner "+str(ml)+" was not optimized.")
                            else:
                                if trainData.domain.classVar.varType == orange.VarTypes.Discrete:
                                    optAcc[ml].append(tunedPars[0])
                                else:
                                    res = evalUtilities.crossValidation([MLmethods[ml]], trainData, folds=5, stratified=orange.MakeRandomIndices.StratifiedIfPossible, random_generator = random.randint(0, 100))
                                    R2 = evalUtilities.R2(res)[0]
                                    optAcc[ml].append(R2)

                                miscUtilities.removeDir(runPath) 
                #Train the model
                if SpecialModel is not None:
                    model = SpecialModel 
                else:
                    model = MLmethods[ml](trainData)
                models[ml].append(model)
                #Test the model
                if self.responseType == "Classification":
                    results[ml].append((evalUtilities.getClassificationAccuracy(testData, model), evalUtilities.getConfMat(testData, model) ) )
                else:
                    local_exp_pred = []
                    # Predict using bulk-predict
                    predictions = model(testData)
                    # Gather predictions
                    for n,ex in enumerate(testData):
                        local_exp_pred.append((ex.getclass().value, predictions[n].value))
                    results[ml].append((evalUtilities.calcRMSE(local_exp_pred), evalUtilities.calcRsqrt(local_exp_pred) ) )
                    #Save the experimental value and correspondent predicted value
                    exp_pred[ml] += local_exp_pred
                if callBack:
                     stepsDone += 1
                     if not callBack((100*stepsDone)/nTotalSteps): return None
                if callBackWithFoldModel:
                    callBackWithFoldModel(model) 

            res = self.createStatObj(results[ml], exp_pred[ml], nTrainEx[ml], nTestEx[ml],self.responseType, self.nExtFolds, logTxt, labels = hasattr(self.data.domain.classVar,"values") and list(self.data.domain.classVar.values) or None )
            if self.verbose > 0: 
                print "UnbiasedAccuracyGetter!Results  "+ml+":\n"
                pprint(res)
            if not res:
                raise Exception("No results available!")
            res["runningTime"] = time.time() - startTime
            statistics[ml] = copy.deepcopy(res)
            self.__writeResults(statistics)
            self.__log("       OK")
          except:
            self.__log("       Learner "+str(ml)+" failed to create/optimize the model!")
            error = str(sys.exc_info()[0]) +" "+\
                        str(sys.exc_info()[1]) +" "+\
                        str(traceback.extract_tb(sys.exc_info()[2]))
            self.__log(error)
 
            res = self.createStatObj()
            statistics[ml] = copy.deepcopy(res)
            self.__writeResults(statistics)

        if not statistics or len(statistics) < 1:
            self.__log("ERROR: No statistics to return!")
            return None
        elif len(statistics) > 1:
            #We still need to build a consensus model out of the stable models 
            #   ONLY if there are more that one model stable!
            #   When only one or no stable models, build a consensus based on all models
            # ALWAYS exclude specialType models (MLmethods[ml].specialType > 0)
            consensusMLs={}
            for modelName in statistics:
                StabilityValue = statistics[modelName]["StabilityValue"]
                if StabilityValue is not None and statistics[modelName]["stable"]:
                    consensusMLs[modelName] = copy.deepcopy(statistics[modelName])

            self.__log("Found "+str(len(consensusMLs))+" stable MLmethods out of "+str(len(statistics))+" MLmethods.")

            if len(consensusMLs) <= 1:   # we need more models to build a consensus!
                consensusMLs={}
                for modelName in statistics:
                    consensusMLs[modelName] = copy.deepcopy(statistics[modelName])

            # Exclude specialType models 
            excludeThis = []
            for learnerName in consensusMLs:
                if models[learnerName][0].specialType > 0:
                    excludeThis.append(learnerName)
            for learnerName in excludeThis:
                consensusMLs.pop(learnerName)
                self.__log("    > Excluded special model " + learnerName)
            self.__log("    > Stable modules: " + str(consensusMLs.keys()))

            if len(consensusMLs) >= 2:
                #Var for saving each Fols result
                startTime = time.time()
                Cresults = []
                Cexp_pred = []
                CnTrainEx = []
                CnTestEx = []
                self.__log("Calculating the statistics for a Consensus model based on "+str([ml for ml in consensusMLs]))
                for foldN in range(self.nExtFolds):
                    if self.responseType == "Classification":
                        CLASS0 = str(self.data.domain.classVar.values[0])
                        CLASS1 = str(self.data.domain.classVar.values[1])
                        # exprTest0
                        exprTest0 = "(0"
                        for ml in consensusMLs:
                            exprTest0 += "+( "+ml+" == "+CLASS0+" )*"+str(optAcc[ml][foldN])+" "
                        exprTest0 += ")/IF0(sum([False"
                        for ml in consensusMLs:
                            exprTest0 += ", "+ml+" == "+CLASS0+" "
                        exprTest0 += "]),1)"
                        # exprTest1
                        exprTest1 = "(0"
                        for ml in consensusMLs:
                            exprTest1 += "+( "+ml+" == "+CLASS1+" )*"+str(optAcc[ml][foldN])+" "
                        exprTest1 += ")/IF0(sum([False"
                        for ml in consensusMLs:
                            exprTest1 += ", "+ml+" == "+CLASS1+" "
                        exprTest1 += "]),1)"
                        # Expression
                        expression = [exprTest0+" >= "+exprTest1+" -> "+CLASS0," -> "+CLASS1]
                    else:
                        Q2sum = sum([optAcc[ml][foldN] for ml in consensusMLs])
                        expression = "(1 / "+str(Q2sum)+") * (0"
                        for ml in consensusMLs:
                            expression += " + "+str(optAcc[ml][foldN])+" * "+ml+" "
                        expression += ")"

                    testData = self.data.select(DataIdxs,foldN+1)  # fold 0 if for the train Bias!!
                    smilesAttr = dataUtilities.getSMILESAttr(testData)
                    if smilesAttr:
                        self.__log("Found SMILES attribute:"+smilesAttr)
                        testData = dataUtilities.attributeDeselectionData(testData, [smilesAttr])
                        self.__log("Selected attrs: "+str([attr.name for attr in trainData.domain[0:3]] + ["..."] + [attr.name for attr in trainData.domain[len(trainData.domain)-3:]]))

                    CnTestEx.append(len(testData))
                    consensusClassifiers = {}
                    for learnerName in consensusMLs:
                        consensusClassifiers[learnerName] = models[learnerName][foldN]

                    model = AZorngConsensus.ConsensusClassifier(classifiers = consensusClassifiers, expression = expression)     
                    CnTrainEx.append(model.NTrainEx)
                    #Test the model
                    if self.responseType == "Classification":
                        Cresults.append((evalUtilities.getClassificationAccuracy(testData, model), evalUtilities.getConfMat(testData, model) ) )
                    else:
                        local_exp_pred = []
                        # Predict using bulk-predict
                        predictions = model(testData)
                        # Gather predictions
                        for n,ex in enumerate(testData):
                            local_exp_pred.append((ex.getclass().value, predictions[n].value))
                        Cresults.append((evalUtilities.calcRMSE(local_exp_pred), evalUtilities.calcRsqrt(local_exp_pred) ) )
                        #Save the experimental value and correspondent predicted value
                        Cexp_pred += local_exp_pred

                res = self.createStatObj(Cresults, Cexp_pred, CnTrainEx, CnTestEx, self.responseType, self.nExtFolds, labels = hasattr(self.data.domain.classVar,"values") and list(self.data.domain.classVar.values) or None )
                res["runningTime"] = time.time() - startTime
                statistics["Consensus"] = copy.deepcopy(res)
                statistics["Consensus"]["IndividualStatistics"] = copy.deepcopy(consensusMLs)
                self.__writeResults(statistics)
            self.__log("Returned multiple ML methods statistics.")
            return statistics
                 
        #By default return the only existing statistics!
        self.__writeResults(statistics)
        self.__log("Returned only one ML method statistics.")
        return statistics[statistics.keys()[0]]
示例#8
0
def Wrapper(train, randTest, extTest, resultsFid, projectName, MCCdict, descList):

    # Select RDKit desc and keep CLint for reference
    attrList = []
    fid = open("RDKitDesc.txt")
    for line in fid:
        attrList.append(string.strip(line))
    fid.close()    
    #attrList = attrList + ["CLint"] 
    attrList = attrList + ["HLM_XEN025;Mean;CLint (uL/min/mg);(Num)"]
    train = dataUtilities.attributeSelectionData(train, attrList)

    print "Ranking with contiuous response"
    train = changeRespVar(train, "HLM_XEN025;Mean;CLint (uL/min/mg);(Num)")
    print "Cont resp ", train.domain.classVar

    print "Pearson ranking"
    scoreTuple = PearsonRank.getRankedAbs(train, 178)
    tuplePrint(scoreTuple, 20)
    rankTuple = getRank(scoreTuple)
    rankSumTuple = rankTuple
    #tuplePrint(rankSumTuple, 50)
    #tuplePrint(rankTuple, 20)

    print "ReliefF ranking "
    relief = Orange.feature.scoring.Relief(k=20, m=50)
    scoreTuple = Orange.feature.scoring.score_all(train, score=relief)
    #tuplePrint(scoreTuple, 20)
    rankTuple = getRank(scoreTuple)
#    rankSumTuple = rankTuple
    rankSumTuple = getRankSum(rankSumTuple, rankTuple)
#    tuplePrint(rankSumTuple, 50)
#    tuplePrint(rankTuple, 20)
#
    print "Ranking with categorical response"
    train = changeRespVar(train, "CLint")
    print "Cat resp ", train.domain.classVar
#
    print "ReliefF ranking "
    relief = Orange.feature.scoring.Relief(k=20, m=50)
    scoreTuple = Orange.feature.scoring.score_all(train, score=relief)
    tuplePrint(scoreTuple, 20)
    rankTuple = getRank(scoreTuple)
#    print "OBS!!!!!!!!!!!! Remove if already done"
#    rankSumTuple = rankTuple
    rankSumTuple = getRankSum(rankSumTuple, rankTuple)
    #tuplePrint(rankTuple, 20)
#
    print "MDL ranking "
    score = Orange.feature.scoring.MDL()
    scoreTuple = Orange.feature.scoring.score_all(train, score)
    tuplePrint(scoreTuple, 20)
    rankTuple = getRank(scoreTuple)
#    rankSumTuple = rankTuple
    rankSumTuple = getRankSum(rankSumTuple, rankTuple)
#    #tuplePrint(rankTuple, 20)
#    #tuplePrint(rankSumTuple, 50)
#
    # Return average rank in sorted list
    rankSumTuple = sortRankSum(rankSumTuple, 1)
    tuplePrint(rankSumTuple, 50)
    #print rankSumTuple

    for nDesc in descList:
        MCC_CV, MCC_rand, MCC_ext = getAccStat(rankSumTuple, nDesc, train, randTest, extTest, resultsFid, projectName)
        MCCdict[projectName][str(nDesc)] = [MCC_CV, MCC_rand, MCC_ext]

    return MCCdict
示例#9
0
def descSelection(data, NdescComb):

    nAttr = len(data.domain.attributes)
    print "Number of attributes ", nAttr
    print "Maximum number of desc combinations ", pow(2, nAttr)
    print "Ndesc must be lower than the max number of desc combinations"
    print NdescComb

    # Randomly sample Ndesc combinations
    attrList = getDescComb(data, nAttr, NdescComb)

    # Rank the accuracy of each descriptor by averaging the accuracy of all models including a descriptor

    # Select all descriptors above median accuracy and repeat the random sampling of desc combinations

    return attrList


if __name__ == "__main__":

    dataFile = "trainDataAllEP.txt"
    data = dataUtilities.DataTable(dataFile)

    attrList = ["IT03423_Seq_BF", "hERG_IW_pIC50", "IT03423_BF", "IT03423_perc101_BF", "Caco2_intrinsic", "ACDlogD74", "Conc_QTc", "IT03713_BF", "IT10850_BF", "IT22015_BF", "IT22016_BF"]
    data = dataUtilities.attributeSelectionData(data, attrList)

    NdescComb = 100  # Number of desc combinations to sample in the first iteration
    attrList = descSelection(data, NdescComb)
    print attrList
示例#10
0
def buildModel(trainData, MLMethod, queueType = "NoSGE", verbose = 0, logFile = None):
        """
        Buld the method passed in MLMethod and optimize ( "IndividualStatistics"  not in MLMethod)
        if MLMethod is a Consensus ("individualStatistics"  in MLMethod) , build each and optimize first all models and after build the consensus!
        """
        log(logFile, "Building and optimizing learner: "+MLMethod["MLMethod"]+"...")
        learners = {}
        MLMethods = {}
        if "IndividualStatistics"  in MLMethod:         #It is a consensus and will certaily not contain any 
                                                        #special model as it was filtered in the getUnbiasedAcc
            for ML in MLMethod["IndividualStatistics"]:
                MLMethods[ML] = copy.deepcopy(MLMethod["IndividualStatistics"][ML])
        else:
            ML = MLMethod["MLMethod"]
            if MLMETHODS[ML](name = ML).specialType == 1:  # If is a special model and has a built-in optimizaer
                log(logFile, "       This is a special model")
                smilesAttr = dataUtilities.getSMILESAttr(trainData)
                if smilesAttr:
                    log(logFile,"Found SMILES attribute:"+smilesAttr)
                    trainData = dataUtilities.attributeSelectionData(trainData, [smilesAttr, trainData.domain.classVar.name])
                optInfo, SpecialModel = MLMETHODS[ML](name = ML).optimizePars(trainData, folds = 5)
                return SpecialModel
            else:
                MLMethods[MLMethod["MLMethod"]] = MLMethod

        smilesAttr = dataUtilities.getSMILESAttr(trainData)
        if smilesAttr:
            trainData = dataUtilities.attributeDeselectionData(trainData, [smilesAttr])

        # optimize all MLMethods
        for ML in MLMethods:
            log(logFile, "  Optimizing MLmethod: "+ML)
            learners[ML] = MLMETHODS[ML](name = ML)

            runPath = miscUtilities.createScratchDir(baseDir = AZOC.NFS_SCRATCHDIR, desc = "competitiveWorkflow_BuildModel")
            trainData.save(os.path.join(runPath,"trainData.tab"))

            tunedPars = paramOptUtilities.getOptParam(
                learner = learners[ML],
                trainDataFile = os.path.join(runPath,"trainData.tab"),
                useGrid = False,
                verbose = verbose,
                queueType = queueType,
                runPath = runPath,
                nExtFolds = None,
                logFile = logFile,
                getTunedPars = True)

            
            if not learners[ML].optimized:
                print "WARNING: competitiveWorkflow: The learner "+str(learners[ML])+" was not optimized."
                #print "         Using default parameters"
                print "         The "+str(learners[ML])+" will not be included"
                #print "         Returning None"
                print "             DEBUG can be made in: "+runPath 
                #Setting default parameters
                #learners[ML] = learners[ML].__class__()   
                #return None
                learners.pop(ML)
                continue
            else:
                print "Optimized learner ",learners[ML]      
                if trainData.domain.classVar.varType == orange.VarTypes.Discrete:
                    MLMethods[ML]["optAcc"] = tunedPars[0] 
                else:
                    res = orngTest.crossValidation([learners[ML]], trainData, folds=5, strat=orange.MakeRandomIndices.StratifiedIfPossible, randomGenerator = random.randint(0, 100))
                    R2 = evalUtilities.R2(res)[0]  
                    MLMethods[ML]["optAcc"] = R2
                miscUtilities.removeDir(runPath)
        #Train the model
        if len(learners) == 1:
            log(logFile, "  Building the model:"+learners.keys()[0])
            model = learners[learners.keys()[0]](trainData)
        elif len(learners) >= 1:
            model = buildConsensus(trainData,learners,MLMethods)  
        else:
            print "ERROR: No Learners were selected!"
            return None

        return model
示例#11
0
    def getAcc(self, callBack=None, callBackWithFoldModel=None):
        """ For regression problems, it returns the RMSE and the Q2 
            For Classification problems, it returns CA and the ConfMat
            The return is made in a Dict: {"RMSE":0.2,"Q2":0.1,"CA":0.98,"CM":[[TP, FP],[FN,TN]]}
            For the EvalResults not supported for a specific learner/datase, the respective result will be None

            if the learner is a dict {"LearnerName":learner, ...} the results will be a dict with results for all Learners and for a consensus
                made out of those that were stable

            It some error occurred, the respective values in the Dict will be None
        """
        self.__log("Starting Calculating MLStatistics")
        statistics = {}
        if not self.__areInputsOK():
            return None
        # Set the response type
        self.responseType = self.data.domain.classVar.varType == orange.VarTypes.Discrete and "Classification" or "Regression"
        self.__log("  " + str(self.responseType))

        #Create the Train and test sets
        if self.usePreDefFolds:
            DataIdxs = self.preDefIndices
        else:
            DataIdxs = self.sampler(self.data, self.nExtFolds)
        foldsN = [f for f in dict.fromkeys(DataIdxs) if f != 0
                  ]  #Folds used only from 1 on ... 0 are for fixed train Bias
        nFolds = len(foldsN)
        #Fix the Indexes based on DataIdxs
        # (0s) represents the train set  ( >= 1s) represents the test set folds
        if self.useVarCtrlCV:
            nShifted = [0] * nFolds
            for idx, isTest in enumerate(
                    self.preDefIndices
            ):  # self.preDefIndices == 0 are to be used in TrainBias
                if not isTest:
                    if DataIdxs[idx]:
                        nShifted[DataIdxs[idx]] += 1
                        DataIdxs[idx] = 0
            for idx, shift in enumerate(nShifted):
                self.__log("In fold " + str(idx) + ", " + str(shift) +
                           " examples were shifted to the train set.")

        #Var for saving each Fols result
        optAcc = {}
        results = {}
        exp_pred = {}
        nTrainEx = {}
        nTestEx = {}

        #Set a dict of learners
        MLmethods = {}
        if type(self.learner) == dict:
            for ml in self.learner:
                MLmethods[ml] = self.learner[ml]
        else:
            MLmethods[self.learner.name] = self.learner

        models = {}
        self.__log("Calculating Statistics for MLmethods:")
        self.__log("  " + str([x for x in MLmethods]))

        #Check data in advance so that, by chance, it will not faill at the last fold!
        for foldN in foldsN:
            trainData = self.data.select(DataIdxs, foldN, negate=1)
            self.__checkTrainData(trainData)

        #Optional!!
        # Order Learners so that PLS is the first
        sortedML = [ml for ml in MLmethods]
        if "PLS" in sortedML:
            sortedML.remove("PLS")
            sortedML.insert(0, "PLS")

        stepsDone = 0
        nTotalSteps = len(sortedML) * self.nExtFolds
        for ml in sortedML:
            startTime = time.time()
            self.__log("    > " + str(ml) + "...")
            try:
                #Var for saving each Fols result
                results[ml] = []
                exp_pred[ml] = []
                models[ml] = []
                nTrainEx[ml] = []
                nTestEx[ml] = []
                optAcc[ml] = []
                logTxt = ""
                for foldN in foldsN:
                    if type(self.learner) == dict:
                        self.paramList = None

                    trainData = self.data.select(DataIdxs, foldN, negate=1)
                    testData = self.data.select(DataIdxs, foldN)
                    smilesAttr = dataUtilities.getSMILESAttr(trainData)
                    if smilesAttr:
                        self.__log("Found SMILES attribute:" + smilesAttr)
                        if MLmethods[ml].specialType == 1:
                            trainData = dataUtilities.attributeSelectionData(
                                trainData,
                                [smilesAttr, trainData.domain.classVar.name])
                            testData = dataUtilities.attributeSelectionData(
                                testData,
                                [smilesAttr, testData.domain.classVar.name])
                            self.__log(
                                "Selected attrs: " +
                                str([attr.name for attr in trainData.domain]))
                        else:
                            trainData = dataUtilities.attributeDeselectionData(
                                trainData, [smilesAttr])
                            testData = dataUtilities.attributeDeselectionData(
                                testData, [smilesAttr])
                            self.__log("Selected attrs: " + str(
                                [attr.name for attr in trainData.domain[0:3]] +
                                ["..."] + [
                                    attr.name for attr in trainData.
                                    domain[len(trainData.domain) - 3:]
                                ]))

                    nTrainEx[ml].append(len(trainData))
                    nTestEx[ml].append(len(testData))
                    #Test if trainsets inside optimizer will respect dataSize criterias.
                    #  if not, don't optimize, but still train the model
                    dontOptimize = False
                    if self.responseType != "Classification" and (
                            len(trainData) *
                        (1 - 1.0 / self.nInnerFolds) < 20):
                        dontOptimize = True
                    else:
                        tmpDataIdxs = self.sampler(trainData, self.nInnerFolds)
                        tmpTrainData = trainData.select(tmpDataIdxs,
                                                        1,
                                                        negate=1)
                        if not self.__checkTrainData(tmpTrainData, False):
                            dontOptimize = True

                    SpecialModel = None
                    if dontOptimize:
                        logTxt += "       Fold " + str(
                            foldN
                        ) + ": Too few compounds to optimize model hyper-parameters\n"
                        self.__log(logTxt)
                        if trainData.domain.classVar.varType == orange.VarTypes.Discrete:
                            res = evalUtilities.crossValidation(
                                [MLmethods[ml]],
                                trainData,
                                folds=5,
                                stratified=orange.MakeRandomIndices.
                                StratifiedIfPossible,
                                random_generator=random.randint(0, 100))
                            CA = evalUtilities.CA(res)[0]
                            optAcc[ml].append(CA)
                        else:
                            res = evalUtilities.crossValidation(
                                [MLmethods[ml]],
                                trainData,
                                folds=5,
                                stratified=orange.MakeRandomIndices.
                                StratifiedIfPossible,
                                random_generator=random.randint(0, 100))
                            R2 = evalUtilities.R2(res)[0]
                            optAcc[ml].append(R2)
                    else:
                        if MLmethods[ml].specialType == 1:
                            if trainData.domain.classVar.varType == orange.VarTypes.Discrete:
                                optInfo, SpecialModel = MLmethods[
                                    ml].optimizePars(trainData, folds=5)
                                optAcc[ml].append(optInfo["Acc"])
                            else:
                                res = evalUtilities.crossValidation(
                                    [MLmethods[ml]],
                                    trainData,
                                    folds=5,
                                    stratified=orange.MakeRandomIndices.
                                    StratifiedIfPossible,
                                    random_generator=random.randint(0, 100))
                                R2 = evalUtilities.R2(res)[0]
                                optAcc[ml].append(R2)
                        else:
                            runPath = miscUtilities.createScratchDir(
                                baseDir=AZOC.NFS_SCRATCHDIR,
                                desc="AccWOptParam",
                                seed=id(trainData))
                            trainData.save(
                                os.path.join(runPath, "trainData.tab"))
                            tunedPars = paramOptUtilities.getOptParam(
                                learner=MLmethods[ml],
                                trainDataFile=os.path.join(
                                    runPath, "trainData.tab"),
                                paramList=self.paramList,
                                useGrid=False,
                                verbose=self.verbose,
                                queueType=self.queueType,
                                runPath=runPath,
                                nExtFolds=None,
                                nFolds=self.nInnerFolds,
                                logFile=self.logFile,
                                getTunedPars=True,
                                fixedParams=self.fixedParams)
                            if not MLmethods[ml] or not MLmethods[ml].optimized:
                                self.__log(
                                    "       WARNING: GETACCWOPTPARAM: The learner "
                                    + str(ml) + " was not optimized.")
                                self.__log(
                                    "                It will be ignored")
                                #self.__log("                It will be set to default parameters")
                                self.__log(
                                    "                    DEBUG can be done in: "
                                    + runPath)
                                #Set learner back to default
                                #MLmethods[ml] = MLmethods[ml].__class__()
                                raise Exception("The learner " + str(ml) +
                                                " was not optimized.")
                            else:
                                if trainData.domain.classVar.varType == orange.VarTypes.Discrete:
                                    optAcc[ml].append(tunedPars[0])
                                else:
                                    res = evalUtilities.crossValidation(
                                        [MLmethods[ml]],
                                        trainData,
                                        folds=5,
                                        stratified=orange.MakeRandomIndices.
                                        StratifiedIfPossible,
                                        random_generator=random.randint(
                                            0, 100))
                                    R2 = evalUtilities.R2(res)[0]
                                    optAcc[ml].append(R2)

                                miscUtilities.removeDir(runPath)
                    #Train the model
                    if SpecialModel is not None:
                        model = SpecialModel
                    else:
                        model = MLmethods[ml](trainData)
                    models[ml].append(model)
                    #Test the model
                    if self.responseType == "Classification":
                        results[ml].append(
                            (evalUtilities.getClassificationAccuracy(
                                testData, model),
                             evalUtilities.getConfMat(testData, model)))
                    else:
                        local_exp_pred = []
                        # Predict using bulk-predict
                        predictions = model(testData)
                        # Gather predictions
                        for n, ex in enumerate(testData):
                            local_exp_pred.append(
                                (ex.getclass().value, predictions[n].value))
                        results[ml].append(
                            (evalUtilities.calcRMSE(local_exp_pred),
                             evalUtilities.calcRsqrt(local_exp_pred)))
                        #Save the experimental value and correspondent predicted value
                        exp_pred[ml] += local_exp_pred
                    if callBack:
                        stepsDone += 1
                        if not callBack((100 * stepsDone) / nTotalSteps):
                            return None
                    if callBackWithFoldModel:
                        callBackWithFoldModel(model)

                res = self.createStatObj(
                    results[ml],
                    exp_pred[ml],
                    nTrainEx[ml],
                    nTestEx[ml],
                    self.responseType,
                    self.nExtFolds,
                    logTxt,
                    labels=hasattr(self.data.domain.classVar, "values")
                    and list(self.data.domain.classVar.values) or None)
                if self.verbose > 0:
                    print "UnbiasedAccuracyGetter!Results  " + ml + ":\n"
                    pprint(res)
                if not res:
                    raise Exception("No results available!")
                res["runningTime"] = time.time() - startTime
                statistics[ml] = copy.deepcopy(res)
                self.__writeResults(statistics)
                self.__log("       OK")
            except:
                self.__log("       Learner " + str(ml) +
                           " failed to create/optimize the model!")
                error = str(sys.exc_info()[0]) +" "+\
                            str(sys.exc_info()[1]) +" "+\
                            str(traceback.extract_tb(sys.exc_info()[2]))
                self.__log(error)

                res = self.createStatObj()
                statistics[ml] = copy.deepcopy(res)
                self.__writeResults(statistics)

        if not statistics or len(statistics) < 1:
            self.__log("ERROR: No statistics to return!")
            return None
        elif len(statistics) > 1:
            #We still need to build a consensus model out of the stable models
            #   ONLY if there are more that one model stable!
            #   When only one or no stable models, build a consensus based on all models
            # ALWAYS exclude specialType models (MLmethods[ml].specialType > 0)
            consensusMLs = {}
            for modelName in statistics:
                StabilityValue = statistics[modelName]["StabilityValue"]
                if StabilityValue is not None and statistics[modelName][
                        "stable"]:
                    consensusMLs[modelName] = copy.deepcopy(
                        statistics[modelName])

            self.__log("Found " + str(len(consensusMLs)) +
                       " stable MLmethods out of " + str(len(statistics)) +
                       " MLmethods.")

            if len(consensusMLs
                   ) <= 1:  # we need more models to build a consensus!
                consensusMLs = {}
                for modelName in statistics:
                    consensusMLs[modelName] = copy.deepcopy(
                        statistics[modelName])

            # Exclude specialType models
            excludeThis = []
            for learnerName in consensusMLs:
                if models[learnerName][0].specialType > 0:
                    excludeThis.append(learnerName)
            for learnerName in excludeThis:
                consensusMLs.pop(learnerName)
                self.__log("    > Excluded special model " + learnerName)
            self.__log("    > Stable modules: " + str(consensusMLs.keys()))

            if len(consensusMLs) >= 2:
                #Var for saving each Fols result
                startTime = time.time()
                Cresults = []
                Cexp_pred = []
                CnTrainEx = []
                CnTestEx = []
                self.__log(
                    "Calculating the statistics for a Consensus model based on "
                    + str([ml for ml in consensusMLs]))
                for foldN in range(self.nExtFolds):
                    if self.responseType == "Classification":
                        CLASS0 = str(self.data.domain.classVar.values[0])
                        CLASS1 = str(self.data.domain.classVar.values[1])
                        # exprTest0
                        exprTest0 = "(0"
                        for ml in consensusMLs:
                            exprTest0 += "+( " + ml + " == " + CLASS0 + " )*" + str(
                                optAcc[ml][foldN]) + " "
                        exprTest0 += ")/IF0(sum([False"
                        for ml in consensusMLs:
                            exprTest0 += ", " + ml + " == " + CLASS0 + " "
                        exprTest0 += "]),1)"
                        # exprTest1
                        exprTest1 = "(0"
                        for ml in consensusMLs:
                            exprTest1 += "+( " + ml + " == " + CLASS1 + " )*" + str(
                                optAcc[ml][foldN]) + " "
                        exprTest1 += ")/IF0(sum([False"
                        for ml in consensusMLs:
                            exprTest1 += ", " + ml + " == " + CLASS1 + " "
                        exprTest1 += "]),1)"
                        # Expression
                        expression = [
                            exprTest0 + " >= " + exprTest1 + " -> " + CLASS0,
                            " -> " + CLASS1
                        ]
                    else:
                        Q2sum = sum([optAcc[ml][foldN] for ml in consensusMLs])
                        expression = "(1 / " + str(Q2sum) + ") * (0"
                        for ml in consensusMLs:
                            expression += " + " + str(
                                optAcc[ml][foldN]) + " * " + ml + " "
                        expression += ")"

                    testData = self.data.select(
                        DataIdxs, foldN + 1)  # fold 0 if for the train Bias!!
                    smilesAttr = dataUtilities.getSMILESAttr(testData)
                    if smilesAttr:
                        self.__log("Found SMILES attribute:" + smilesAttr)
                        testData = dataUtilities.attributeDeselectionData(
                            testData, [smilesAttr])
                        self.__log("Selected attrs: " + str(
                            [attr.name
                             for attr in trainData.domain[0:3]] + ["..."] + [
                                 attr.name for attr in
                                 trainData.domain[len(trainData.domain) - 3:]
                             ]))

                    CnTestEx.append(len(testData))
                    consensusClassifiers = {}
                    for learnerName in consensusMLs:
                        consensusClassifiers[learnerName] = models[
                            learnerName][foldN]

                    model = AZorngConsensus.ConsensusClassifier(
                        classifiers=consensusClassifiers,
                        expression=expression)
                    CnTrainEx.append(model.NTrainEx)
                    #Test the model
                    if self.responseType == "Classification":
                        Cresults.append(
                            (evalUtilities.getClassificationAccuracy(
                                testData, model),
                             evalUtilities.getConfMat(testData, model)))
                    else:
                        local_exp_pred = []
                        # Predict using bulk-predict
                        predictions = model(testData)
                        # Gather predictions
                        for n, ex in enumerate(testData):
                            local_exp_pred.append(
                                (ex.getclass().value, predictions[n].value))
                        Cresults.append(
                            (evalUtilities.calcRMSE(local_exp_pred),
                             evalUtilities.calcRsqrt(local_exp_pred)))
                        #Save the experimental value and correspondent predicted value
                        Cexp_pred += local_exp_pred

                res = self.createStatObj(
                    Cresults,
                    Cexp_pred,
                    CnTrainEx,
                    CnTestEx,
                    self.responseType,
                    self.nExtFolds,
                    labels=hasattr(self.data.domain.classVar, "values")
                    and list(self.data.domain.classVar.values) or None)
                res["runningTime"] = time.time() - startTime
                statistics["Consensus"] = copy.deepcopy(res)
                statistics["Consensus"][
                    "IndividualStatistics"] = copy.deepcopy(consensusMLs)
                self.__writeResults(statistics)
            self.__log("Returned multiple ML methods statistics.")
            return statistics

        #By default return the only existing statistics!
        self.__writeResults(statistics)
        self.__log("Returned only one ML method statistics.")
        return statistics[statistics.keys()[0]]