示例#1
0
def strategyRunner(userStrategy,
                   strategyParameters=(),
                   initialCapital=100000,
                   symbolList=['600000.XSHG'],
                   startDate=dt.datetime(2015, 9, 1),
                   endDate=dt.datetime(2015, 9, 15),
                   benchmark=None,
                   refreshRate=1,
                   saveFile=False,
                   plot=True,
                   logLevel='critical',
                   portfolioType=PortfolioType.FullNotional,
                   **kwargs):
    u"""

    回测用运行器

    :param userStrategy: 用户自定义策略
    :param strategyParameters: 用户自定义策略所用参数,默认为None
    :param initialCapital: 初始资金,默认为100000
    :param symbolList: 证券代码,默认为600000.xshg
    :param startDate: 回测起始日,默认为2015年9月1日
    :param endDate: 回测结束日,默认为2015年9月15日
    :param dataSource: 行情数据源,默认为DataSource.DXDataCenter
    :param benchmark: 比较基准,比如指数。默认为None
    :param refreshRate: bar的调用频率,默认为0
    :param saveFile: 是否保存表现的数据为本地文件,默认为False
    :param plot: 是否绘制表现图,默认为True
    :param logLevel: 日志的等级
    :param portfolioType: 收益计算的方法
    :param kwargs: 其他需要的关键字参数
    :return: dict
    """

    logger = CustomLogger(logLevel)

    try:
        dataSource = kwargs['dataSource']
        Settings.set_source(dataSource)
    except KeyError:
        dataSource = Settings.data_source

    if dataSource == DataSource.CSV:
        dataHandler = HistoricalCSVDataHandler(csvDir=kwargs['csvDir'],
                                               symbolList=symbolList,
                                               logger=logger)
    elif dataSource == DataSource.DataYes:
        try:
            token = kwargs['token']
        except KeyError:
            token = None
        dataHandler = DataYesMarketDataHandler(token=token,
                                               symbolList=symbolList,
                                               startDate=startDate,
                                               endDate=endDate,
                                               benchmark=benchmark,
                                               logger=logger)
    elif dataSource == DataSource.DXDataCenter:
        try:
            freq = kwargs['freq']
        except KeyError:
            freq = 0
            logger.info(
                "No `freq` keyword arguments found. using default value as freq=0"
            )
        dataHandler = DXDataCenter(symbolList=symbolList,
                                   startDate=startDate,
                                   endDate=endDate,
                                   freq=freq,
                                   benchmark=benchmark,
                                   logger=logger)
    elif dataSource == DataSource.YAHOO:
        dataHandler = YaHooDataProvider(symbolList=symbolList,
                                        startDate=startDate,
                                        endDate=endDate,
                                        logger=logger)
    elif dataSource == DataSource.WIND:
        try:
            freq = kwargs['freq']
        except KeyError:
            freq = 'D'
            logger.info(
                "No `freq` keyword arguments found. using default value as freq=D"
            )

        try:
            priceAdj = kwargs['priceAdj']
        except KeyError:
            priceAdj = '0'
            logger.info(
                "No `priceAdj` keyword arguments found. using default value as priceAdj=0"
            )

        dataHandler = WindMarketDataHandler(symbolList=symbolList,
                                            startDate=startDate,
                                            endDate=endDate,
                                            freq=freq,
                                            priceAdj=priceAdj,
                                            benchmark=benchmark,
                                            logger=logger)

    backtest = Backtest(initialCapital,
                        0.0,
                        dataHandler,
                        SimulatedExecutionHandler,
                        Portfolio,
                        userStrategy,
                        logger,
                        benchmark,
                        refreshRate,
                        plot=plot,
                        portfolioType=portfolioType,
                        strategyParameters=strategyParameters)

    equityCurve, \
    orderBook, \
    filledBook, \
    perf_metric, \
    perf_df, \
    rollingRisk, \
    aggregated_positions, \
    transactions, \
    turnover_rate, \
    info_view \
        = backtest.simulateTrading()

    # save to a excel file
    if saveFile:
        if os.path.isdir('performance/'):
            shutil.rmtree('performance/')
        os.mkdir('performance/')
        logger.info("Strategy performance is now saving to local files...")
        perf_metric.to_csv('performance/perf_metrics.csv', float_format='%.4f')
        perf_df.to_csv('performance/perf_series.csv', float_format='%.4f')
        if benchmark is not None and rollingRisk is not None:
            rollingRisk.to_csv('performance/rollingRisk.csv',
                               float_format='%.4f')
        equityCurve.to_csv('performance/equity_curve.csv', float_format='%.4f')
        orderBook.to_csv('performance/order_book.csv', float_format='%.4f')
        filledBook.to_csv('performance/filled_book.csv', float_format='%.4f')
        aggregated_positions.to_csv('performance/aggregated_positions.csv',
                                    float_format='%.4f')
        turnover_rate.to_csv('performance/turnover_rate.csv',
                             float_format='%.4f')
        transactions.to_csv('performance/transactions.csv',
                            float_format='%.4f')
        info_view.to_csv('performance/strategy_info.csv', float_format='%.4f')
        logger.info("Performance saving is finished!")

    return {
        'equity_curve': equityCurve,
        'order_book': orderBook,
        'filled_book': filledBook,
        'perf_metric': perf_metric,
        'perf_series': perf_df,
        'aggregated_positions': aggregated_positions,
        'transactions': transactions,
        'turnover_rate': turnover_rate,
        'user_info': info_view
    }
示例#2
0
def strategyRunner(userStrategy,
                   strategyParameters=(),
                   initialCapital=100000,
                   symbolList=['600000.XSHG'],
                   startDate=dt.datetime(2015, 9, 1),
                   endDate=dt.datetime(2015, 9, 15),
                   dataSource=DataSource.DXDataCenter,
                   benchmark=None,
                   refreshRate=1,
                   saveFile=False,
                   plot=True,
                   logLevel='critical',
                   portfolioType=PortfolioType.FullNotional,
                   **kwargs):

    logger = CustomLogger(logLevel)

    if dataSource == DataSource.CSV:
        dataHandler = HistoricalCSVDataHandler(csvDir=kwargs['csvDir'],
                                               symbolList=symbolList,
                                               logger=logger)
    elif dataSource == DataSource.DataYes:
        try:
            token = kwargs['token']
        except KeyError:
            token = None
        dataHandler = DataYesMarketDataHandler(token=token,
                                               symbolList=symbolList,
                                               startDate=startDate,
                                               endDate=endDate,
                                               benchmark=benchmark,
                                               logger=logger)
    elif dataSource == DataSource.DXDataCenter:
        try:
            freq = kwargs['freq']
        except KeyError:
            freq = 0
        dataHandler = DXDataCenter(symbolList=symbolList,
                                   startDate=startDate,
                                   endDate=endDate,
                                   freq=freq,
                                   benchmark=benchmark,
                                   logger=logger)
    elif dataSource == DataSource.YAHOO:
        dataHandler = YaHooDataProvider(symbolList=symbolList,
                                        startDate=startDate,
                                        endDate=endDate,
                                        logger=logger)

    backtest = Backtest(initialCapital,
                        0.0,
                        dataHandler,
                        SimulatedExecutionHandler,
                        Portfolio,
                        userStrategy,
                        logger,
                        benchmark,
                        refreshRate,
                        plot=plot,
                        portfolioType=portfolioType,
                        strategyParameters=strategyParameters)

    equityCurve, \
    orderBook, \
    filledBook, \
    perf_metric, \
    perf_df, \
    rollingRisk, \
    aggregated_positions, \
    transactions, \
    turnover_rate, \
    info_view \
        = backtest.simulateTrading()

    # save to a excel file
    if saveFile:
        if os.path.isdir('performance/'):
            shutil.rmtree('performance/')
        os.mkdir('performance/')
        logger.info("Strategy performance is now saving to local files...")
        perf_metric.to_csv('performance/perf_metrics.csv', float_format='%.4f')
        perf_df.to_csv('performance/perf_series.csv', float_format='%.4f')
        if benchmark is not None:
            rollingRisk.to_csv('performance/rollingRisk.csv',
                               float_format='%.4f')
        equityCurve.to_csv('performance/equity_curve.csv', float_format='%.4f')
        orderBook.to_csv('performance/order_book.csv', float_format='%.4f')
        filledBook.to_csv('performance/filled_book.csv', float_format='%.4f')
        aggregated_positions.to_csv('performance/aggregated_positions.csv',
                                    float_format='%.4f')
        turnover_rate.to_csv('performance/turnover_rate.csv',
                             float_format='%.4f')
        transactions.to_csv('performance/transactions.csv',
                            float_format='%.4f')
        info_view.to_csv('performance/strategy_info.csv', float_format='%.4f')
        logger.info("Performance saving is finished!")

    return {
        'equity_curve': equityCurve,
        'order_book': orderBook,
        'filled_book': filledBook,
        'perf_metric': perf_metric,
        'perf_series': perf_df,
        'aggregated_positions': aggregated_positions,
        'transactions': transactions,
        'turnover_rate': turnover_rate,
        'user_info': info_view
    }
示例#3
0
def strategyRunner(
    userStrategy,
    strategyParameters=(),
    initialCapital=100000,
    symbolList=["600000.XSHG"],
    startDate=dt.datetime(2015, 9, 1),
    endDate=dt.datetime(2015, 9, 15),
    dataSource=DataSource.DXDataCenter,
    benchmark=None,
    refreshRate=1,
    saveFile=False,
    plot=True,
    logLevel="critical",
    portfolioType=PortfolioType.FullNotional,
    **kwargs
):

    logger = CustomLogger(logLevel)

    if dataSource == DataSource.CSV:
        dataHandler = HistoricalCSVDataHandler(csvDir=kwargs["csvDir"], symbolList=symbolList, logger=logger)
    elif dataSource == DataSource.DataYes:
        try:
            token = kwargs["token"]
        except KeyError:
            token = None
        dataHandler = DataYesMarketDataHandler(
            token=token, symbolList=symbolList, startDate=startDate, endDate=endDate, benchmark=benchmark, logger=logger
        )
    elif dataSource == DataSource.DXDataCenter:
        try:
            freq = kwargs["freq"]
        except KeyError:
            freq = 0
        dataHandler = DXDataCenter(
            symbolList=symbolList, startDate=startDate, endDate=endDate, freq=freq, benchmark=benchmark, logger=logger
        )
    elif dataSource == DataSource.YAHOO:
        dataHandler = YaHooDataProvider(symbolList=symbolList, startDate=startDate, endDate=endDate, logger=logger)

    backtest = Backtest(
        initialCapital,
        0.0,
        dataHandler,
        SimulatedExecutionHandler,
        Portfolio,
        userStrategy,
        logger,
        benchmark,
        refreshRate,
        plot=plot,
        portfolioType=portfolioType,
        strategyParameters=strategyParameters,
    )

    equityCurve, orderBook, filledBook, perf_metric, perf_df, rollingRisk, aggregated_positions, transactions, turnover_rate, info_view = (
        backtest.simulateTrading()
    )

    # save to a excel file
    if saveFile:
        if os.path.isdir("performance/"):
            shutil.rmtree("performance/")
        os.mkdir("performance/")
        logger.info("Strategy performance is now saving to local files...")
        perf_metric.to_csv("performance/perf_metrics.csv", float_format="%.4f")
        perf_df.to_csv("performance/perf_series.csv", float_format="%.4f")
        if benchmark is not None:
            rollingRisk.to_csv("performance/rollingRisk.csv", float_format="%.4f")
        equityCurve.to_csv("performance/equity_curve.csv", float_format="%.4f")
        orderBook.to_csv("performance/order_book.csv", float_format="%.4f")
        filledBook.to_csv("performance/filled_book.csv", float_format="%.4f")
        aggregated_positions.to_csv("performance/aggregated_positions.csv", float_format="%.4f")
        turnover_rate.to_csv("performance/turnover_rate.csv", float_format="%.4f")
        transactions.to_csv("performance/transactions.csv", float_format="%.4f")
        info_view.to_csv("performance/strategy_info.csv", float_format="%.4f")
        logger.info("Performance saving is finished!")

    return {
        "equity_curve": equityCurve,
        "order_book": orderBook,
        "filled_book": filledBook,
        "perf_metric": perf_metric,
        "perf_series": perf_df,
        "aggregated_positions": aggregated_positions,
        "transactions": transactions,
        "turnover_rate": turnover_rate,
        "user_info": info_view,
    }
示例#4
0
def strategyRunner(userStrategy,
                   strategyParameters=(),
                   initialCapital=100000,
                   symbolList=['600000.XSHG'],
                   startDate=dt.datetime(2015, 9, 1),
                   endDate=dt.datetime(2015, 9, 15),
                   benchmark=None,
                   refreshRate=1,
                   saveFile=False,
                   plot=True,
                   logLevel='critical',
                   portfolioType=PortfolioType.FullNotional,
                   **kwargs):
    u"""

    回测用运行器

    :param userStrategy: 用户自定义策略
    :param strategyParameters: 用户自定义策略所用参数,默认为None
    :param initialCapital: 初始资金,默认为100000
    :param symbolList: 证券代码,默认为600000.xshg
    :param startDate: 回测起始日,默认为2015年9月1日
    :param endDate: 回测结束日,默认为2015年9月15日
    :param dataSource: 行情数据源,默认为DataSource.DXDataCenter
    :param benchmark: 比较基准,比如指数。默认为None
    :param refreshRate: bar的调用频率,默认为0
    :param saveFile: 是否保存表现的数据为本地文件,默认为False
    :param plot: 是否绘制表现图,默认为True
    :param logLevel: 日志的等级
    :param portfolioType: 收益计算的方法
    :param kwargs: 其他需要的关键字参数
    :return: dict
    """

    logger = CustomLogger(logLevel)


    try:
        dataSource = kwargs['dataSource']
        Settings.set_source(dataSource)
    except KeyError:
        dataSource = Settings.data_source

    if dataSource == DataSource.CSV:
        dataHandler = HistoricalCSVDataHandler(csvDir=kwargs['csvDir'],
                                               symbolList=symbolList,
                                               logger=logger)
    elif dataSource == DataSource.DataYes:
        try:
            token = kwargs['token']
        except KeyError:
            token = None
        dataHandler = DataYesMarketDataHandler(token=token,
                                               symbolList=symbolList,
                                               startDate=startDate,
                                               endDate=endDate,
                                               benchmark=benchmark,
                                               logger=logger)
    elif dataSource == DataSource.DXDataCenter:
        try:
            freq = kwargs['freq']
        except KeyError:
            freq = 0
            logger.info("No `freq` keyword arguments found. using default value as freq=0")
        dataHandler = DXDataCenter(symbolList=symbolList,
                                   startDate=startDate,
                                   endDate=endDate,
                                   freq=freq,
                                   benchmark=benchmark,
                                   logger=logger)
    elif dataSource == DataSource.YAHOO:
        dataHandler = YaHooDataProvider(symbolList=symbolList,
                                        startDate=startDate,
                                        endDate=endDate,
                                        logger=logger)

    backtest = Backtest(initialCapital,
                        0.0,
                        dataHandler,
                        SimulatedExecutionHandler,
                        Portfolio,
                        userStrategy,
                        logger,
                        benchmark,
                        refreshRate,
                        plot=plot,
                        portfolioType=portfolioType,
                        strategyParameters=strategyParameters)

    equityCurve, \
    orderBook, \
    filledBook, \
    perf_metric, \
    perf_df, \
    rollingRisk, \
    aggregated_positions, \
    transactions, \
    turnover_rate, \
    info_view \
        = backtest.simulateTrading()

    # save to a excel file
    if saveFile:
        if os.path.isdir('performance/'):
            shutil.rmtree('performance/')
        os.mkdir('performance/')
        logger.info("Strategy performance is now saving to local files...")
        perf_metric.to_csv('performance/perf_metrics.csv', float_format='%.4f')
        perf_df.to_csv('performance/perf_series.csv', float_format='%.4f')
        if benchmark is not None:
            rollingRisk.to_csv('performance/rollingRisk.csv', float_format='%.4f')
        equityCurve.to_csv('performance/equity_curve.csv', float_format='%.4f')
        orderBook.to_csv('performance/order_book.csv', float_format='%.4f')
        filledBook.to_csv('performance/filled_book.csv', float_format='%.4f')
        aggregated_positions.to_csv('performance/aggregated_positions.csv', float_format='%.4f')
        turnover_rate.to_csv('performance/turnover_rate.csv', float_format='%.4f')
        transactions.to_csv('performance/transactions.csv', float_format='%.4f')
        info_view.to_csv('performance/strategy_info.csv', float_format='%.4f')
        logger.info("Performance saving is finished!")

    return {'equity_curve': equityCurve,
            'order_book': orderBook,
            'filled_book': filledBook,
            'perf_metric': perf_metric,
            'perf_series': perf_df,
            'aggregated_positions': aggregated_positions,
            'transactions': transactions,
            'turnover_rate': turnover_rate,
            'user_info': info_view}
示例#5
0
def strategyRunner(userStrategy,
                   initialCapital=100000,
                   symbolList=['600000.XSHG'],
                   startDate=dt.datetime(2015, 9, 1),
                   endDate=dt.datetime(2015, 9, 15),
                   dataSource=DataSource.DXDataCenter,
                   benchmark=None,
                   refreshRate=1,
                   saveFile=False,
                   plot=True,
                   logLevel='critical',
                   portfolioType=PortfolioType.FullNotional,
                   **kwargs):

    logger = CustomLogger(logLevel)

    if dataSource == DataSource.CSV:
        dataHandler = HistoricalCSVDataHandler(csvDir=kwargs['csvDir'],
                                               symbolList=symbolList,
                                               logger=logger)
    elif dataSource == DataSource.DataYes:
        try:
            token = kwargs['token']
        except KeyError:
            token = None
        dataHandler = DataYesMarketDataHandler(token=token,
                                               symbolList=symbolList,
                                               startDate=startDate,
                                               endDate=endDate,
                                               benchmark=benchmark,
                                               logger=logger)
    elif dataSource == DataSource.DXDataCenter:
        try:
            freq = kwargs['freq']
        except KeyError:
            freq = 0
        dataHandler = DXDataCenter(symbolList=symbolList,
                                   startDate=startDate,
                                   endDate=endDate,
                                   freq=freq,
                                   benchmark=benchmark,
                                   logger=logger)
    elif dataSource == DataSource.YAHOO:
        dataHandler = YaHooDataProvider(symbolList=symbolList,
                                        startDate=startDate,
                                        endDate=endDate,
                                        logger=logger)

    backtest = Backtest(initialCapital,
                        0.0,
                        dataHandler,
                        SimulatedExecutionHandler,
                        Portfolio,
                        userStrategy,
                        logger,
                        benchmark,
                        refreshRate,
                        plot=plot,
                        portfolioType=portfolioType)

    equityCurve, \
    orderBook, \
    filledBook, \
    perf_metric, \
    perf_df, \
    rollingRisk, \
    aggregated_positions, \
    transactions, \
    turnover_rate, \
    info_view \
        = backtest.simulateTrading()

    # save to a excel file
    if saveFile:
        if os.path.isdir('performance/'):
            shutil.rmtree('performance/')
        os.mkdir('performance/')
        logger.info("Strategy performance is now saving to local files...")
        perf_metric.to_csv('performance/perf_metrics.csv', float_format='%.4f')
        perf_df.to_csv('performance/perf_series.csv', float_format='%.4f')
        if benchmark is not None:
            rollingRisk.to_csv('performance/rollingRisk.csv', float_format='%.4f')
        equityCurve.to_csv('performance/equity_curve.csv', float_format='%.4f')
        orderBook.to_csv('performance/order_book.csv', float_format='%.4f')
        filledBook.to_csv('performance/filled_book.csv', float_format='%.4f')
        aggregated_positions.to_csv('performance/aggregated_positions.csv', float_format='%.4f')
        turnover_rate.to_csv('performance/turnover_rate.csv', float_format='%.4f')
        transactions.to_csv('performance/transactions.csv', float_format='%.4f')
        info_view.to_csv('performance/strategy_info.csv', float_format='%.4f')
        logger.info("Performance saving is finished!")

    return {'equity_curve': equityCurve,
            'order_book': orderBook,
            'filled_book': filledBook,
            'perf_metric': perf_metric,
            'perf_series': perf_df,
            'aggregated_positions': aggregated_positions,
            'transactions': transactions,
            'turnover_rate': turnover_rate,
            'user_info': info_view}