示例#1
0
 def __init__(self, casper_seq_file, output_file_path, ofa):
     self.csffile = casper_seq_file
     self.ST = SeqTranslate()
     self.allTargets = {}
     self.location = tuple()
     self.output = output_file_path
     self.off_target_all = ofa
示例#2
0
    def __init__(self, inputFileName):

        # variables used in this class
        self.multiSum = 0  #multitargetting sum taken from the previous version of make_graphs
        self.multiCount = 0  #multitargetting count taken from the previous version of make_graphs
        self.seqTrans = SeqTranslate(
        )  #SeqTranslate variable. for decrompressing the data
        self.chromesomeList = list(
        )  # list of a list for the chromesomes. As it currently stands, this variable is used in both read_chromesomes and in read_targets
        self.karystatsList = list(
        )  # list of (ints) of the karyStats (whatever those are) to be used for the get_chrom_length function
        self.genome = ""  # genome name
        self.misc = ""  # anything from the misc line
        self.repeats = {
        }  #dictionary of the number of repeats. See the read_repeats function for more info
        self.seeds = {
        }  #dictionary of which chromesomes are repeats. See the read_repeats function for more info
        self.dec_tup_data = {}
        self.chromesomesSelectedList = list()
        # data for population analysis
        # dict:
        # key = the seed
        #       value = tuple (org name, chom #, location, sequence, pam, score, strand, endo)
        self.popData = {}

        #file path variable
        self.fileName = inputFileName
示例#3
0
    def __init__(self):
        # qt stuff
        super(genLibrary, self).__init__()
        uic.loadUi('library_prompt.ui', self)
        self.setWindowTitle('Generate Library')
        self.setWindowIcon(Qt.QIcon('cas9image.png'))

        # button connections
        self.cancel_button.clicked.connect(self.cancel_function)
        self.BrowseButton.clicked.connect(self.browse_function)
        self.submit_button.clicked.connect(self.submit_data)
        self.progressBar.setValue(0)

        # variables
        self.anno_data = dict()
        self.cspr_file = ''
        self.parser = CSPRparser('')
        self.kegg_nonKegg = ''
        self.gen_lib_dict = dict()
        self.S = SeqTranslate()
        self.cspr_data = dict()
        self.Output = dict()
        self.off_tol = .05
        self.off_max_misMatch = 4
        self.off_target_running = False

        # set the numbers for the num genes combo box item
        for i in range(10):
            self.numGenescomboBox.addItem(str(i + 1))

        # set the numbers for the minOn combo box
        for i in range(19, 70):
            self.minON_comboBox.addItem(str(i + 1))
示例#4
0
    def __init__(self, parent=None):

        super(Multitargeting, self).__init__()
        uic.loadUi('multitargetingwindow.ui', self)
        self.setWindowIcon(QtGui.QIcon("cas9image.png"))
        # Storage containers for the repeats and seed sequences
        self.sq = SeqTranslate()  # SeqTranslate object used in class

        # Initializes the three graphs
        self.chart_view_chro_bar = QChartView()
        self.chart_view_repeat_bar = QChartView()
        self.chart_view_repeat_line = QChartView()

        self.data = ""
        self.shortHand = ""
        self.chromo_length = list()

        # Listeners for changing the seed sequence or the .cspr file
        self.max_chromo.currentIndexChanged.connect(self.fill_seed_id_chrom)
        self.min_chromo.currentIndexChanged.connect(self.fill_seed_id_chrom)
        self.chromo_seed.currentIndexChanged.connect(self.chro_bar_data)
        self.Analyze_Button.clicked.connect(self.make_graphs)

        #go back to main button
        self.back_button.clicked.connect(self.go_back)

        #Tool Bar options
        self.actionCASPER.triggered.connect(self.changeto_main)

        # Statistics storage variables
        self.max_repeats = 1
        self.average = 0
        self.median = 0
        self.mode = 0
        self.average_unique = 0
        self.average_rep = 0
        self.bar_coords = []
        self.seed_id_seq_pair = {}
        self.positions = []

        #parser object
        self.parser = CSPRparser("")

        self.ready_chromo_min_max = True
        self.ready_chromo_make_graph = True
        self.directory = 'Cspr files'
        self.info_path = os.getcwd()

        ##################################
        self.scene = QtWidgets.QGraphicsScene()
        self.graphicsView.setScene(self.scene)
        self.scene2 = QtWidgets.QGraphicsScene()
        self.graphicsView_2.setScene(self.scene2)
        self.graphicsView.viewport().installEventFilter(self)
示例#5
0
class CasperQuick:
    def __init__(self, casper_seq_file, output_file_path, ofa):
        self.csffile = casper_seq_file
        self.ST = SeqTranslate()
        self.allTargets = {}
        self.location = tuple()
        self.output = output_file_path
        self.off_target_all = ofa

    def loadGenesandTargets(self, rk):
        region_keggs = rk
        for region_kegg in region_keggs:
            self.allTargets[str(region_kegg)] = list()
            if type(region_kegg) == tuple:
                self.location = region_kegg
            else:
                k = Kegg()
                self.location = k.gene_locator(region_kegg)
            myfy = open(self.csffile)
            while True:
                line = myfy.readline()
                if line == '':
                    break
                if line.find('CHROMOSOME') != -1:
                    s = line.find("#")
                    if line[s + 1:-1] == str(
                            self.location[0]
                    ):  # checks to see if it is on the right chromosome
                        curpos = int()
                        while curpos < int(self.location[1]):
                            line = myfy.readline()
                            curpos = self.ST.decompress64(line.split(',')[0])
                        while curpos < int(self.location[2]):
                            line = self.ST.decompress_csf_tuple(
                                myfy.readline()[:-1])
                            curpos = line[0]
                            self.allTargets[str(region_kegg)].append(line)
                        break
            myfy.close()

        self.printoutresultstofile()

    def printoutresultstofile(self):
        out = self.output + "quickresults.txt"
        f = open(out, 'w')
        for item in self.allTargets.keys():
            f.write(item)
            f.write('\n')
            for target in self.allTargets[item]:
                insert = str(target[0]) + "," + str(target[1]) + "," + str(
                    target[2]) + '\n'
                f.write(insert)
        f.close()
示例#6
0
 def decode_targets(self):
     f = open(self.filename)
     # make sure to recognize chromosome number
     data = f.readline()[:-1]
     while data != "REPEATS":
         data = f.readline()[:-1]
         # parse location and sequence
         midpoint = data.find(',')
         location = data[:midpoint]
         sequence = data[midpoint + 1:]
         # decompress the location and sequence information
         s = SeqTranslate()
         location = s.decompress64(location, toseq=False)
         sequence = s.decompress64(sequence, toseq=True)
         # add location to storage vector
         self.targets.append((location, sequence))
示例#7
0
    def __init__(self, output_path, base_org_path, base_org, endo, other_genomes, csize):
        # initialize SeqTranslate object
        self.ST = SeqTranslate()
        self.output_path = output_path
        # my_orgs contains just the
        self.organisms = other_genomes
        self.organisms.append(base_org)
        self.organisms = sorted(self.organisms)
        self.db_path = base_org_path

        # This sets the size of the subsets. NOTE: DO NOT SET THIS TO A LARGE NUMBER IF THERE ARE A LOT OF ORGANISMS
        self.combo_size = csize

        # Dictionary of dictionaries. Key1: generic total sequence Key2: org Value: position
        self.searchableseqs = {}

        # Container that stores all the sequences seen the combination of organisms defined by the key
        # An example key would be (sce, yli) for the shared sequences between S.cerevisiae and Y.lipolytica
        self.buckets = {}

        # Intitialize the self.buckets container to contain the tuple of every organism subset
        for i in range(2, csize+1):
            for subset in itertools.combinations(self.organisms, i):
                self.buckets[subset] = []
                print(subset)
        self.endo = endo

        # The object that is iterated over to decompress the output into readable form
        self.compressed_output = {}

        # Generates the sequence lists
        for org in self.organisms:
            print(org)
            self.make_lists(org)

        # Runs the comparison
        self.create_comparison()
        self.write_to_file()
示例#8
0
    def __init__(self, info_path):
        super(NewGenome, self).__init__()
        uic.loadUi('NewGenome.ui', self)
        self.setWindowTitle('New Genome')
        self.k = KEGG()
        self.info_path = info_path
        #---Button Modifications---#

        self.setWindowIcon(Qt.QIcon("cas9image.png"))
        self.whatsthisButton.clicked.connect(self.whatsthisclicked)
        self.KeggSearchButton.clicked.connect(self.updatekegglist)
        self.resetButton.clicked.connect(self.reset)
        self.submitButton.clicked.connect(self.submit)
        self.browseForFile.clicked.connect(self.selectFasta)
        self.NCBI_File_Search.clicked.connect(self.prep_ncbi_search)
        self.JobsQueueBox.setReadOnly(True)
        self.output_browser.setText("Waiting for program initiation...")
        self.CompletedJobs.setText(" ")
        self.contButton.clicked.connect(self.continue_to_main)

        self.comboBoxEndo.currentIndexChanged.connect(self.endo_settings)

        self.runButton.clicked.connect(self.run_jobs)
        self.clearButton.clicked.connect(self.clear_job_queue)

        self.viewStatButton.setEnabled(False)

        self.JobsQueue = []  # holds Job classes.
        self.Endos = dict()
        self.file = ""

        self.process = QtCore.QProcess()
        self.process.setProcessChannelMode(QtCore.QProcess.MergedChannels)
        self.process.finished.connect(self.upon_process_finishing)
        self.seqTrans = SeqTranslate()

        self.first = False
        #show functionalities on window
        self.fillEndo()
        #self.show()

        self.num_chromo_next = False
示例#9
0
 def get_instances(self):
     ST = SeqTranslate()
     os.chdir(path)
     f = open(self.file_name, 'r')
     while True:
         x = f.readline()
         if x == 'REPEATS\n':
             print("reached repeat sequences")
             break
     while True:
         t = f.readline()
         if t == 'END_OF_FILE':
             print("reached end of repeat sequences")
             break
         ukey = t[:-1]  # takes away the "\n" in the string
         key = ST.decompress64(ukey, slength=20, toseq=True)
         key = ST.fill_As(key, 16)
         self.BAD_instances[key] = list()
         # Add sequences and locations to the list
         v = f.readline().split('\t')[:-1]
         for item in v:
             loctup = item.split(',')
             chrom = loctup[0]
             location = ST.decompress64(loctup[1])
             seq = ST.decompress64(loctup[2][1:], slength=20, toseq=True)
             seq = ST.fill_As(
                 seq, 4
             )  # when A's get lost in the compression this fills them back in
             mytup = (chrom, location, seq)
             self.BAD_instances[key].append(mytup)
     f.close()
     print("currently sorting")
     for key in self.BAD_instances:
         size = len(self.BAD_instances[key])
         newtuple = (key, self.BAD_instances[key], size
                     )  # sequence, location, size
         self.sorted_instances.append(newtuple)
示例#10
0
class Multitargeting(QtWidgets.QMainWindow):

    BAD_instances = {}
    sorted_instances = []

    def __init__(self, parent=None):

        super(Multitargeting, self).__init__()
        uic.loadUi('multitargetingwindow.ui', self)
        self.setWindowIcon(QtGui.QIcon("cas9image.png"))
        # Storage containers for the repeats and seed sequences
        self.sq = SeqTranslate()  # SeqTranslate object used in class

        # Initializes the three graphs
        self.chart_view_chro_bar = QChartView()
        self.chart_view_repeat_bar = QChartView()
        self.chart_view_repeat_line = QChartView()

        self.data = ""
        self.shortHand = ""
        self.chromo_length = list()

        # Listeners for changing the seed sequence or the .cspr file
        self.max_chromo.currentIndexChanged.connect(self.fill_seed_id_chrom)
        self.min_chromo.currentIndexChanged.connect(self.fill_seed_id_chrom)
        self.chromo_seed.currentIndexChanged.connect(self.chro_bar_data)
        self.Analyze_Button.clicked.connect(self.make_graphs)

        #go back to main button
        self.back_button.clicked.connect(self.go_back)

        #Tool Bar options
        self.actionCASPER.triggered.connect(self.changeto_main)

        # Statistics storage variables
        self.max_repeats = 1
        self.average = 0
        self.median = 0
        self.mode = 0
        self.average_unique = 0
        self.average_rep = 0
        self.bar_coords = []
        self.seed_id_seq_pair = {}
        self.positions = []

        #parser object
        self.parser = CSPRparser("")

        self.ready_chromo_min_max = True
        self.ready_chromo_make_graph = True
        self.directory = 'Cspr files'
        self.info_path = os.getcwd()

        ##################################
        self.scene = QtWidgets.QGraphicsScene()
        self.graphicsView.setScene(self.scene)
        self.scene2 = QtWidgets.QGraphicsScene()
        self.graphicsView_2.setScene(self.scene2)
        self.graphicsView.viewport().installEventFilter(self)

    def eventFilter(self, source, event):
        if (event.type() == QtCore.QEvent.MouseMove
                and source is self.graphicsView.viewport()):
            coord = self.graphicsView.mapToScene(event.pos())
            first = True
            for i in self.bar_coords:
                ind = i[0]
                x = i[1]
                y1 = i[2]
                y2 = i[3]
                dups = 0
                if ((coord.x() == x or coord.x() == x + 1
                     or coord.x() == x - 1)
                        and (coord.y() >= y1 and coord.y() <= y2)):

                    listtemp = []
                    for a in self.bar_coords:
                        if (x == a[1] and y1 == a[2] and y2 == a[3]):
                            listtemp.append(a)
                            dups += 1
                    self.scene2 = QtWidgets.QGraphicsScene()
                    self.graphicsView_2.setScene(self.scene2)
                    #self.graphicsView_2.hide()
                    output = str()
                    i = 1
                    for item in listtemp:

                        ind = item[0]
                        seq = str(self.seq_data[ind])
                        seed_id = self.seed_id_seq_pair[seq]
                        temp = self.parser.dec_tup_data[seed_id]
                        temp = temp[ind]
                        if len(listtemp) > 1 and i < len(listtemp):
                            output += 'Location: ' + str(
                                temp[0]) + ' | Seq: ' + str(
                                    temp[1]) + ' | PAM: ' + str(
                                        temp[2]) + ' | SCR: ' + str(
                                            temp[3]) + ' | DIRA: ' + str(
                                                temp[4]) + '\n'
                        else:
                            output += 'Location: ' + str(
                                temp[0]) + ' | Seq: ' + str(
                                    temp[1]) + ' | PAM: ' + str(
                                        temp[2]) + ' | SCR: ' + str(
                                            temp[3]) + ' | DIRA: ' + str(
                                                temp[4])
                        i += 1
                    text = self.scene2.addText(output)
                    #self.graphicsView_2.adjustSize()
                    font = QtGui.QFont()
                    font.setBold(True)
                    font.setPointSize(9)
                    text.setFont(font)

        return Qt.QWidget.eventFilter(self, source, event)

    def launch(self, path):
        os.chdir(path)
        self.directory = path
        self.get_data()
        self.make_graphs()

    def get_data(self):
        onlyfiles = [
            f for f in os.listdir(self.directory)
            if os.path.isfile(os.path.join(self.directory, f))
        ]
        print(onlyfiles)
        orgsandendos = {}
        shortName = {}
        self.endo_drop.clear()
        for file in onlyfiles:
            if file.find('.cspr') != -1:
                newname = file[0:-4]
                s = newname.split('_')
                hold = open(file)
                buf = (hold.readline())
                species = buf[8:buf.find('\n')]
                endo = str(s[1])
                if species not in shortName:
                    shortName[species] = s[0]
                if species in orgsandendos:
                    orgsandendos[species].append(endo)
                else:
                    orgsandendos[species] = [endo]
                    if self.organism_drop.findText(species) == -1:
                        self.organism_drop.addItem(species)
        self.data = orgsandendos
        self.shortHand = shortName
        temp = self.data[str(self.organism_drop.currentText())]
        temp1 = []
        for i in temp:
            i = i.strip('.')
            temp1.append(i)
        self.endo_drop.addItems(temp1)
        self.organism_drop.currentIndexChanged.connect(self.changeEndos)

    def changeEndos(self):
        self.endo_drop.clear()
        temp = self.data[str(self.organism_drop.currentText())]
        temp1 = []
        for i in temp:
            i = i.strip('.')
            temp1.append(i)
            print(i)
        print(temp1)
        self.endo_drop.addItems(temp1)

    def make_graphs(self):
        #get the correct file name
        self.chromo_length.clear()
        file_name = self.shortHand[self.organism_drop.currentText(
        )] + "_" + self.endo_drop.currentText()
        if self.directory.find("/") != -1:
            file = (self.directory + "/" + file_name + ".cspr")
        else:
            file = (self.directory + "\\" + file_name + ".cspr")

        #set up parser, and get the repeats and carry stats
        self.parser.fileName = file
        print(self.endo_drop.currentText())
        self.parser.read_repeats(self.endo_drop.currentText())
        self.parser.read_chromesome(self.endo_drop.currentText())
        self.parser.read_first_lines()
        self.chromo_length = self.parser.karystatsList

        #calculations and setting the windows
        self.average_rep = self.parser.multiSum / self.parser.multiCount
        self.plot_repeats_vs_seeds()
        self.bar_seeds_vs_repeats()
        self.fill_min_max()
        #self.chro_bar_data()
        self.nbr_seq.setText(str(len(self.parser.seeds)))
        self.nbr_unq.setText(str(self.parser.uniq_seq_count()))
        self.avg_rep.setText(str(self.average))
        self.med_rep.setText(str(self.median))
        self.mode_rep.setText(str(self.mode))
        self.scr_lbl.setText(str(self.average_rep))

    #fill in chromo bar visualization
    def chro_bar_data(self):

        if self.ready_chromo_make_graph == False:
            return
        dic_info = {}
        seqLength = int(self.sq.endo_info[self.endo_drop.currentText()][1])
        for seed in self.parser.seeds:
            temp = seed
            temp1 = str(
                self.sq.decompress64(temp, slength=seqLength, toseq=True))
            self.seed_id_seq_pair[temp1] = seed
            dic_info[temp1] = {}
            for repeat in self.parser.seeds[seed]:
                if repeat[0] in dic_info[temp1]:
                    dic_info[temp1][repeat[0]].append(
                        self.sq.decompress64(repeat[1]))
                else:
                    dic_info[temp1][repeat[0]] = [
                        self.sq.decompress64(repeat[1])
                    ]
        self.chro_bar_create(dic_info)
        self.fill_Chromo_Text(dic_info)

    #fill in chromo bar visualization
    def fill_Chromo_Text(self, info):
        chromo_pos = {}
        self.seq_data = []
        self.positions.clear()
        chomonum = 0
        for chromo in info[self.chromo_seed.currentText()]:
            pos = []
            for position in info[(self.chromo_seed.currentText())][chromo]:
                self.seq_data.append(self.chromo_seed.currentText())
                test1 = position / self.chromo_length[int(chromo) - 1]
                test1 = int(test1 * 485)
                self.positions.append(test1)
                pos.append(test1)

            chromo_pos[chromo] = pos
            chomonum += 1

        i = 0
        self.scene = QtWidgets.QGraphicsScene()
        self.graphicsView.setScene(self.scene)
        self.bar_coords.clear()  #clear bar_coords list before creating visual
        ind = 0
        for chromo in chromo_pos:
            pen_blk = QtGui.QPen(QtCore.Qt.black)
            pen_red = QtGui.QPen(QtCore.Qt.red)
            pen_blk.setWidth(3)
            pen_red.setWidth(3)
            if i == 0:
                text = self.scene.addText(str(chromo))
                text.setPos(0, 0)
                font = QtGui.QFont()
                font.setBold(True)
                font.setPointSize(10)
                text.setFont(font)
                self.scene.addRect(40, (i * 25), 525, 25, pen_blk)

            else:
                text = self.scene.addText(str(chromo))
                font = QtGui.QFont()
                font.setBold(True)
                font.setPointSize(10)
                text.setFont(font)
                text.setPos(0, i * 25 + 10 * i)

                self.scene.addRect(40, (i * 25) + 10 * i, 525, 25, pen_blk)
            for k in chromo_pos[chromo]:
                line = self.scene.addLine(k + 40, (i * 25) + 3 + 10 * i,
                                          k + 40, (i * 25) + 22 + 10 * i,
                                          pen_red)
                temp = [
                ]  #used for storing coordinates and saving them in self.bar_coords[]
                temp.append(ind)  #index value
                temp.append(k + 40)  #x value
                temp.append((i * 25) + 3 + 10 * i)  #y1
                temp.append((i * 25) + 22 + 10 * i)  #y2
                self.bar_coords.append(temp)  #push x, y1, and y2 to this list
                ind += 1
            i = i + 1

    #creates bar graph num of repeats vs. chromsome
    #this graphs is connected to the repeats_vs_chromo.py file
    #to represent the widget space in the UI file
    def chro_bar_create(self, info):
        x1 = []
        y1 = []
        lentemp = 0
        for chromo in info[self.chromo_seed.currentText()]:
            y1.append(len(info[self.chromo_seed.currentText()][chromo]))
            x1.append(chromo)
            if (int(chromo) > lentemp):
                lentemp = int(chromo)
        #clear the old graph
        self.repeats_vs_chromo.canvas.axes.clear()
        #x_pos used to format the addition of more bars appropriately
        x_pos = [i for i, _ in enumerate(x1)]

        #loop fixes when there is too many xlabels and they start running together,
        #replaces some with an empty string to space out the labels
        if (len(x_pos) > 20):
            temp = 0
            for i in x_pos:
                if (i == 0):
                    temp += 1
                else:
                    if (temp < len(str(lentemp)) + 2):
                        x1[i] = ""
                        temp += 1
                    else:
                        temp = 0

        #the following statements are plottings / formatting for the graph
        self.repeats_vs_chromo.canvas.axes.bar(x_pos, y1, align='center')
        self.repeats_vs_chromo.canvas.axes.yaxis.set_major_locator(
            MaxNLocator(integer=True))
        self.repeats_vs_chromo.canvas.axes.set_ylim(0, max(y1) + 1)
        self.repeats_vs_chromo.canvas.axes.set_xticks(x_pos)
        self.repeats_vs_chromo.canvas.axes.set_xticklabels(x1)
        self.repeats_vs_chromo.canvas.axes.set_xlabel('Chromosome')
        self.repeats_vs_chromo.canvas.axes.set_ylabel('Number of Repeats')

        #for loop below could be used to rotae labels for spacing
        #for tick in self.repeats_vs_chromo.canvas.axes.get_xticklabels():
        #   tick.set_rotation(90)

        self.repeats_vs_chromo.canvas.draw()

    #plots the sequences per Number Repeats bar graph
    #this graph is connected to the seeds_vs_repeats_bar.py file
    #to represent the wdiget space in the UI file
    def bar_seeds_vs_repeats(self):
        data = {}
        self.average = 0
        for seed in self.parser.repeats:
            self.average += int(self.parser.repeats[seed])
            number = self.parser.repeats[seed]
            if number in data:
                data[number] += 1
            else:
                data[number] = 1
        data = self.order_high_low_rep(data)
        self.average = round(self.average / (len(self.parser.repeats)))
        holder = []
        repeats = []
        max = 0
        for number in data:
            if data[number] > max:
                max = data[number]
            if (data[number] / max) > .01:
                holder.append(data[number])
                repeats.append(number)
        #clear graph space
        self.seeds_vs_repeats_bar.canvas.axes.clear()
        #xpos used to handle appropriate formatting for more bars being added in
        x_pos = [i for i, _ in enumerate(repeats)]
        #the following are plotting / formatting for the graph
        self.seeds_vs_repeats_bar.canvas.axes.bar(x_pos, holder)
        self.seeds_vs_repeats_bar.canvas.axes.set_xticks(x_pos)
        self.seeds_vs_repeats_bar.canvas.axes.set_xticklabels(repeats)
        self.seeds_vs_repeats_bar.canvas.axes.set_xlabel('Number of Repeats')
        self.seeds_vs_repeats_bar.canvas.axes.set_ylabel('Number of Sequences')
        self.seeds_vs_repeats_bar.canvas.axes.set_title(
            'Number of Sequences per Number of Repeats')
        #rects are all the bar objects in the graph
        rects = self.seeds_vs_repeats_bar.canvas.axes.patches
        rect_vals = []
        #this for loop will calculate the height and create an annotation for each bar
        for rect in rects:
            height = rect.get_height()
            temp = self.seeds_vs_repeats_bar.canvas.axes.text(
                rect.get_x() + rect.get_width() / 2,
                height,
                '%d' % int(height),
                ha='center',
                va='bottom')
            temp.set_visible(False)
            rect_vals.append(temp)
        #function used for when user cursor is hovering over the bar, if hovering over a bar, the
        #height annotatin will appear above the bar, otherwise it will be hidden
        def on_plot_hover(event):
            i = 0
            for rect in rects:
                height = rect.get_height()
                if rect.contains(event)[0]:
                    rect_vals[i].set_visible(True)
                else:
                    rect_vals[i].set_visible(False)

                i = i + 1

            self.seeds_vs_repeats_bar.canvas.draw()

        #statement to detect cursor hovering over the bars
        self.seeds_vs_repeats_bar.canvas.mpl_connect('motion_notify_event',
                                                     on_plot_hover)
        #must redraw after every change
        self.seeds_vs_repeats_bar.canvas.draw()

    #plots the repeats per ID number graph as line graph
    #this graph is connected to the repeats_vs_seeds_line.py file
    #to represent the widget space in the UI file
    def plot_repeats_vs_seeds(self):
        data = {}
        for seed in self.parser.repeats:
            number = self.parser.repeats[seed]
            if number in data:
                data[number] += 1
            else:
                data[number] = 1

        max = 0
        y1 = []
        x1 = []
        index = 0
        time = 0
        for number in self.order(data):
            time += 1

            if int(data[number]) > max:
                max = int(data[number])
                self.mode = number

            hold = 0
            while hold < data[number]:
                if index == int(round(len(self.parser.repeats) / 2)):
                    self.median = number
                x1.append(index)
                y1.append(number)
                index = index + 1
                hold += 1

        #clear axes
        self.repeats_vs_seeds_line.canvas.axes.clear()
        #the following are for plotting / formatting
        self.repeats_vs_seeds_line.canvas.axes.plot(x1, y1)
        self.repeats_vs_seeds_line.canvas.axes.set_xlabel('Seed ID Number')
        self.repeats_vs_seeds_line.canvas.axes.set_ylabel('Number of Repeats')
        self.repeats_vs_seeds_line.canvas.axes.set_title(
            'Number of Repeats per Seed ID Number')
        #always redraw at the end
        self.repeats_vs_seeds_line.canvas.draw()

    #fills min and max dropdown windows
    def fill_min_max(self, run_seed_fill=True):
        self.ready_chromo_min_max = False
        index = 1
        self.max_chromo.clear()
        self.min_chromo.clear()
        while index < self.max_repeats + 1:
            self.min_chromo.addItem(str(index))
            self.max_chromo.addItem(str(self.max_repeats + 1 - index))
            index += 1
        self.ready_chromo_min_max = True
        if run_seed_fill:
            self.fill_seed_id_chrom()

    #fill_seed_id_chrom will fill the seed ID dropdown, and create the chromosome graph
    def fill_seed_id_chrom(self):
        if self.ready_chromo_min_max == False:
            return
        if int(self.min_chromo.currentText()) > int(
                self.max_chromo.currentText()):
            self.ready_chromo_min_max = False
            self.max_chromo.clear()
            self.min_chromo.clear()
            self.ready_chromo_min_max = True
            self.fill_min_max(False)
            QtWidgets.QMessageBox.question(
                self, "Maximum cant be less than Minimum",
                "The Minimum number of repeats cant be more than the Maximum",
                QtWidgets.QMessageBox.Ok)
            self.fill_seed_id_chrom()
            return
        self.ready_chromo_make_graph = False
        self.chromo_seed.clear()
        any = False
        seqLength = int(self.sq.endo_info[self.endo_drop.currentText()][1])
        for seed in self.parser.repeats:
            if self.parser.repeats[seed] >= int(self.min_chromo.currentText(
            )) and self.parser.repeats[seed] <= int(
                    self.max_chromo.currentText()):
                any = True
                #temp = self.sq.compress(seed,64)
                self.chromo_seed.addItem(
                    str(
                        self.sq.decompress64(seed,
                                             slength=seqLength,
                                             toseq=True)))
        if any == False:
            QtWidgets.QMessageBox.question(
                self, "No matches found",
                "No seed that is within the specifications could be found",
                QtWidgets.QMessageBox.Ok)
            self.ready_chromo_min_max = False
            self.max_chromo.clear()
            self.min_chromo.clear()
            self.ready_chromo_min_max = True
            self.fill_min_max(False)
            self.fill_seed_id_chrom()
            return
        self.ready_chromo_make_graph = True
        self.chro_bar_data()

    def order(self, data_par):
        data = dict(data_par)
        data2 = []
        while len(data) > 0:
            max = 0
            for item in data:
                if item > max:
                    max = item
            data2.append(max)
            if len(data2) == 1:
                self.max_repeats = max
            del data[max]
        return data2

    def order_high_low_rep(self, dictionary):
        data = dict(dictionary)
        data_ordered = {}
        while len(data) > 0:
            max = 0
            max_index = 0
            for item in data:

                if data[item] > max:
                    max_index = item
                    max = data[item]

            data_ordered[max_index] = max

            del data[max_index]
        return data_ordered

    #connects to view->CASPER to switch back to the main CASPER window
    def changeto_main(self):
        GlobalSettings.mainWindow.show()
        self.hide()

    #connects to go back button in bottom left to switch back to the main CASPER window
    def go_back(self):
        GlobalSettings.mainWindow.show()
        self.hide()

    #-----------------------NOT USED----------------------------#
    def get_instances(self):
        ST = SeqTranslate()
        os.chdir(path)
        f = open(self.file_name, 'r')
        while True:
            x = f.readline()
            if x == 'REPEATS\n':
                print("reached repeat sequences")
                break
        while True:
            t = f.readline()
            if t == 'END_OF_FILE':
                print("reached end of repeat sequences")
                break
            ukey = t[:-1]  # takes away the "\n" in the string
            key = ST.decompress64(ukey, slength=20, toseq=True)
            key = ST.fill_As(key, 16)
            self.BAD_instances[key] = list()
            # Add sequences and locations to the list
            v = f.readline().split('\t')[:-1]
            for item in v:
                loctup = item.split(',')
                chrom = loctup[0]
                location = ST.decompress64(loctup[1])
                seq = ST.decompress64(loctup[2][1:], slength=20, toseq=True)
                seq = ST.fill_As(
                    seq, 4
                )  # when A's get lost in the compression this fills them back in
                mytup = (chrom, location, seq)
                self.BAD_instances[key].append(mytup)
        f.close()
        print("currently sorting")
        for key in self.BAD_instances:
            size = len(self.BAD_instances[key])
            newtuple = (key, self.BAD_instances[key], size
                        )  # sequence, location, size
            self.sorted_instances.append(newtuple)

    #not used
    # Returns the container self.sorted_instances but removes all "single" repeats. Old Code to fix an off-by-1 error
    def return_all_seqs(self):
        myseqs = []
        for instance in self.sorted_instances:
            if instance[2] > 1:
                myseqs.append(instance)
        return myseqs

    #not used
    def return_sorted(self):
        sorted_seqs = sorted(self.sorted_instances,
                             key=operator.itemgetter(2),
                             reverse=True)
        amounts = {}
        for instance in sorted_seqs:
            if instance[2] > 1:
                if instance[2] in amounts:
                    amounts[instance[2]] += 1
                else:
                    amounts[instance[2]] = 1
                print(
                    str(instance[0]) + "," + str(instance[2]) + "," +
                    str(instance[1]))
        for element in amounts:
            print("Number of seed sequences with " + str(element) +
                  " appearances: " + str(amounts[element]))

    #not used
    def return_positions(self):
        positions_mapped = [
        ]  # chromosme, beginning of range, end of range, and number of hits
        for instance in self.sorted_instances:
            if instance[2] > 1:
                for pos in instance[1]:
                    chrom = pos[0]
                    loc = int(pos[1])
                    # check to see if its already in the map
                    need_new = True
                    for position in positions_mapped:
                        if chrom == position[0]:
                            if position[1] < loc < position[2]:
                                position[3] += 1
                                position[4].append(instance[0])
                                need_new = False
                                print("position added")
                    if need_new:
                        newtuple = [
                            chrom, loc - 1000, loc + 1000, 1,
                            [" ", instance[0]]
                        ]
                        positions_mapped.append(newtuple)
        sorted_positions = sorted(positions_mapped,
                                  key=operator.itemgetter(3),
                                  reverse=True)
        for element in sorted_positions:
            print(
                str(element[0]) + "," + str(element[1]) + "," +
                str(element[2]) + "," + str(element[3]))
        for element in sorted_positions:
            sequences = ""
            for sequence in element[4]:
                sequences += sequence + ","
            print(sequences)
        return sorted_positions

    #not used
    def int_to_char(self, i):
        switcher = {0: 'A', 1: 'T', 2: 'C', 3: 'G'}
        return switcher[i]

    # ----------------------------------------------------------#

    # this function calls the closingWindow class.
    def closeEvent(self, event):
        GlobalSettings.mainWindow.closeFunction()
        event.accept()
示例#11
0
    def __init__(self, threshold, endo, base_org, csf_file, other_orgs,
                 casperofflist, output_path):
        self.ST = SeqTranslate()
        self.rSequences = []
        self.get_rseqs(casperofflist)
        self.mypath = csf_file[:csf_file.find(base_org)]
        self.ref_genomes = [base_org]
        self.ref_genomes += other_orgs
        self.endo = endo
        self.threshold = threshold
        self.dSequence = str(
        )  # global to class so that all scoring functions can use it

        # This is for autofilling the HsuMatrix
        self.matrixKeys = [
            "GT", "AC", "GG", "TG", "TT", "CA", "CT", "GA", "AA", "AG", "TC",
            "CC"
        ]
        self.matrix = {}
        self.fill_matrix()

        # This is where the data is stored before it is written
        self.output_data = dict()
        for myseq in self.rSequences:
            self.output_data[myseq[0]] = list()

        # BEGIN RUNNING THROUGH SEQUENCES
        for sequence in self.rSequences:
            print(sequence)
            for genome in self.ref_genomes:
                f = open(self.mypath + genome + self.endo + ".cspr", 'r')
                while True:
                    line = f.readline()
                    if line.find("CHROMOSOME") != -1:
                        curchrom = line[line.find("#") + 1:-1]
                        print("Finished checking " + curchrom)
                    else:
                        if line[0:-1] == "REPEATS":
                            break
                        # Checks for a signifcant number of mismatches:
                        #locseq = line[:-1].split(",")
                        if self.critical_similarity(
                                sequence[0],
                                self.ST.decompress_csf_tuple(line)[1]):
                            # This is where the real fun begins: off target analysis
                            print('found a similarity')
                            seqscore = self.get_scores(
                                sequence[1],
                                self.ST.decompress_csf_tuple(line)[1])
                            if seqscore > self.threshold:
                                self.output_data[sequence[0]].append(
                                    (str(curchrom),
                                     self.ST.decompress_csf_tuple(line[:-1]),
                                     int(seqscore * 100), genome))

        # END SEQUENCES RUN
        # Output the data acquired:
        out = open(
            output_path + "off_results" + str(datetime.datetime.now().time()) +
            '.txt', 'w')
        out.write(
            "Off-target sequences identified.  Scores are between O and 1.  A higher value indicates greater"
            "probability of off-target activity at that location.\n")
        for sequence in self.output_data:
            out.write(sequence + "\n")
            for off_target in self.output_data[sequence]:
                outloc = off_target[0] + "," + str(
                    off_target[1][0]) + "," + off_target[1][1]
                out.write(off_target[3] + "," + outloc + "\t" +
                          str(off_target[2] / 100) + '\n')
        out.close()
示例#12
0
class OffTargetAlgorithm:
    def __init__(self, threshold, endo, base_org, csf_file, other_orgs,
                 casperofflist, output_path):
        self.ST = SeqTranslate()
        self.rSequences = []
        self.get_rseqs(casperofflist)
        self.mypath = csf_file[:csf_file.find(base_org)]
        self.ref_genomes = [base_org]
        self.ref_genomes += other_orgs
        self.endo = endo
        self.threshold = threshold
        self.dSequence = str(
        )  # global to class so that all scoring functions can use it

        # This is for autofilling the HsuMatrix
        self.matrixKeys = [
            "GT", "AC", "GG", "TG", "TT", "CA", "CT", "GA", "AA", "AG", "TC",
            "CC"
        ]
        self.matrix = {}
        self.fill_matrix()

        # This is where the data is stored before it is written
        self.output_data = dict()
        for myseq in self.rSequences:
            self.output_data[myseq[0]] = list()

        # BEGIN RUNNING THROUGH SEQUENCES
        for sequence in self.rSequences:
            print(sequence)
            for genome in self.ref_genomes:
                f = open(self.mypath + genome + self.endo + ".cspr", 'r')
                while True:
                    line = f.readline()
                    if line.find("CHROMOSOME") != -1:
                        curchrom = line[line.find("#") + 1:-1]
                        print("Finished checking " + curchrom)
                    else:
                        if line[0:-1] == "REPEATS":
                            break
                        # Checks for a signifcant number of mismatches:
                        #locseq = line[:-1].split(",")
                        if self.critical_similarity(
                                sequence[0],
                                self.ST.decompress_csf_tuple(line)[1]):
                            # This is where the real fun begins: off target analysis
                            print('found a similarity')
                            seqscore = self.get_scores(
                                sequence[1],
                                self.ST.decompress_csf_tuple(line)[1])
                            if seqscore > self.threshold:
                                self.output_data[sequence[0]].append(
                                    (str(curchrom),
                                     self.ST.decompress_csf_tuple(line[:-1]),
                                     int(seqscore * 100), genome))

        # END SEQUENCES RUN
        # Output the data acquired:
        out = open(
            output_path + "off_results" + str(datetime.datetime.now().time()) +
            '.txt', 'w')
        out.write(
            "Off-target sequences identified.  Scores are between O and 1.  A higher value indicates greater"
            "probability of off-target activity at that location.\n")
        for sequence in self.output_data:
            out.write(sequence + "\n")
            for off_target in self.output_data[sequence]:
                outloc = off_target[0] + "," + str(
                    off_target[1][0]) + "," + off_target[1][1]
                out.write(off_target[3] + "," + outloc + "\t" +
                          str(off_target[2] / 100) + '\n')
        out.close()

    def get_rseqs(self, offlist):
        targets = list()
        cofile = open(offlist, 'r')
        cofile.readline()
        while True:
            t = cofile.readline()[:-1]
            if t == 'EN':
                break
            targets.append(t)
        for tar in targets:
            compseed = self.ST.compress(tar[:16], 64)
            comptail = self.ST.compress(tar[16:], 64)
            compressed = compseed + "." + comptail
            rseq = ""
            for nt in tar[0:-1]:
                rseq = nt + rseq
            self.rSequences.append([tar, rseq])

    def get_scores(self, rseq, dseq):
        self.dSequence = Seq(dseq, IUPAC.unambiguous_dna).reverse_complement()
        hsu = self.get_hsu_score(rseq)
        qual = self.get_qualt_score(rseq)
        step = self.qualt_step_score(rseq)
        output = ((math.sqrt(hsu) + step) + pow(qual, 6))
        return output

    def fill_matrix(self):
        f = open('CASPERinfo', 'r')
        l = " "
        while True:
            l = f.readline()
            if l[0] == "H":
                break
        i = 0
        l = f.readline()
        while l[0] != '-':
            values = l.split("\t")
            self.matrix[self.matrixKeys[i]] = values
            i += 1
            l = f.readline()
        for element in self.matrix:
            self.matrix[element][18] = self.matrix[element][18][0:-1]

    def get_hsu_score(self, rSequence):
        score = 1.0
        for i in range(0, 19):
            rnt = rSequence[i]
            dnt = self.dSequence[i]
            lookup = str(rnt) + str(dnt)
            if lookup in self.matrixKeys:
                hsu = self.matrix[lookup][18 - i]
                score *= float(hsu)
        return score

    def get_qualt_score(self, rSequence):
        score = 3.5477
        for i in range(0, 19):
            lookup = rSequence[i] + self.dSequence[i]
            if lookup in self.matrixKeys:
                score -= 1.0 / (i + 1)
        return score / 3.5477

    def qualt_step_score(self, rSequence):
        score = 1.0
        for i in range(0, 19):
            lookup = rSequence[i] + self.dSequence[i]
            if lookup in self.matrixKeys:
                if i < 6:
                    score -= 0.1
                elif i < 12:
                    score -= 0.05
                elif i < 20:
                    score -= 0.0125
        return score

    def separation_score(self, rSequence):
        misses = []
        delta = 0
        for i in range(0, 19):
            lookup = rSequence[i] + self.dSequence[i]
            if lookup in self.matrixKeys:
                misses.append(i)
        if len(misses) == 2:
            delta = (misses[1] - misses[0]) / 2.0
        if len(misses) == 3:
            delta = ((misses[1] - misses[0]) + (misses[2] - misses[1])) / 3.0
        if len(misses) == 4:
            delta = ((misses[1] - misses[0]) + (misses[2] - misses[1])) / 3.0
        retval = 1.0 - (delta / 19.0)
        return retval

    # If there is more than four mismatches it returns false, else it will return true
    def critical_similarity(self, cseq1, cseq2):
        mismatches = 0
        lim = min([len(cseq1), len(cseq2)])
        check = True
        for i in range(
                lim
        ):  # Doesn't matter whether you use cseq1 or cseq2 they are the same length
            if cseq1[i] != cseq2[i]:
                mismatches += 1
                if mismatches == 5:
                    check = False
                    break
        return check

    def int_to_char(self, i):
        switcher = {0: 'A', 1: 'T', 2: 'C', 3: 'G'}
        return switcher[i]

    def char_to_int(self, c):
        switcher = {'A': 0, 'T': 1, 'C': 2, 'G': 3}
        return switcher[c]
示例#13
0
    def __init__(self, parent=None):
        super(Multitargeting, self).__init__()
        uic.loadUi(GlobalSettings.appdir + 'multitargetingwindow.ui', self)
        self.setWindowIcon(QtGui.QIcon(GlobalSettings.appdir +
                                       "cas9image.png"))

        self.sq = SeqTranslate()  # SeqTranslate object used in class

        # Initializes the three graphs
        self.chart_view_chro_bar = QChartView()
        self.chart_view_repeat_bar = QChartView()
        self.chart_view_repeat_line = QChartView()

        self.data = ""
        self.shortHand = ""
        self.chromo_length = list()

        # Listeners for changing the seed sequence or the .cspr file
        self.chromo_seed.currentIndexChanged.connect(self.seed_chromo_changed)
        self.update_min_max.clicked.connect(self.update)
        self.Analyze_Button.clicked.connect(self.make_graphs)

        # go back to main button
        self.back_button.clicked.connect(self.go_back)

        # Tool Bar options
        self.actionCASPER.triggered.connect(self.changeto_main)

        # Statistics storage variables
        self.max_repeats = 1
        self.average = 0
        self.median = 0
        self.mode = 0
        self.average_unique = 0
        self.average_rep = 0
        self.bar_coords = []
        self.seed_id_seq_pair = {}

        # parser object
        self.parser = CSPRparser("")

        self.ready_chromo_min_max = True
        self.ready_chromo_make_graph = True
        self.directory = 'Cspr files'
        self.info_path = os.getcwd()

        ##################################
        self.scene = QtWidgets.QGraphicsScene()
        self.graphicsView.setScene(self.scene)
        self.scene2 = QtWidgets.QGraphicsScene()
        self.graphicsView_2.setScene(self.scene2)
        self.graphicsView.viewport().installEventFilter(self)

        self.loading_window = loading_window()
        screen = QtGui.QGuiApplication.screenAt(QtGui.QCursor().pos())

        self.mwfg = self.frameGeometry()  ##Center window
        self.cp = QtWidgets.QDesktopWidget().availableGeometry().center(
        )  ##Center window
        self.mwfg.moveCenter(self.cp)  ##Center window
        self.move(self.mwfg.topLeft())  ##Center window
        self.hide()
示例#14
0
    def __init__(self, info_path):
        super(NewGenome, self).__init__()
        uic.loadUi(GlobalSettings.appdir + 'NewGenome.ui', self)
        self.setWindowTitle('New Genome')
        self.setWindowTitle('New Genome')
        self.info_path = info_path

        #---Style Modifications---#

        groupbox_style = """
        QGroupBox:title{subcontrol-origin: margin;
                        left: 10px;
                        padding: 0 5px 0 5px;}
        QGroupBox#Step1{border: 2px solid rgb(111,181,110);
                        border-radius: 9px;
                        font: 15pt "Arial";
                        font: bold;
                        margin-top: 10px;}"""

        self.Step1.setStyleSheet(groupbox_style)
        self.Step2.setStyleSheet(groupbox_style.replace("Step1", "Step2"))
        self.Step3.setStyleSheet(groupbox_style.replace("Step1", "Step3"))

        #---Button Modifications---#

        self.setWindowIcon(Qt.QIcon(GlobalSettings.appdir + "cas9image.png"))
        self.resetButton.clicked.connect(self.reset)
        self.submitButton.clicked.connect(self.submit)
        self.browseForFile.clicked.connect(self.selectFasta)
        self.remove_job.clicked.connect(self.remove_from_queue)
        self.output_browser.setText("Waiting for program initiation...")
        self.contButton.clicked.connect(self.continue_to_main)

        self.comboBoxEndo.currentIndexChanged.connect(self.endo_settings)

        self.runButton.clicked.connect(self.run_jobs_wrapper)
        self.clearButton.clicked.connect(self.clear_job_queue)

        self.JobsQueue = []  # holds Job classes.
        self.Endos = dict()
        self.file = ""

        self.process = QtCore.QProcess()
        self.process.setProcessChannelMode(QtCore.QProcess.MergedChannels)
        self.process.finished.connect(self.upon_process_finishing)
        self.seqTrans = SeqTranslate()
        self.exit = False

        self.first = False
        #show functionalities on window
        self.fillEndo()
        #self.show()

        self.num_chromo_next = False

        #Jobs Table
        #self.job_Table.setColumnCount(3)
        self.job_Table.setShowGrid(False)
        #self.job_Table.setHorizontalHeaderLabels(["Job Queue","Job in Progress", "Completed Jobs"])
        self.job_Table.horizontalHeader().setSectionsClickable(True)
        #self.job_Table.horizontalHeader().setSectionResizeMode(QHeaderView.ResizeToContents)
        #self.job_Table.horizontalHeader().setSectionResizeMode(2, QHeaderView.Stretch)
        self.job_Table.setSelectionBehavior(
            QtWidgets.QAbstractItemView.SelectRows)
        self.job_Table.setEditTriggers(
            QtWidgets.QAbstractItemView.NoEditTriggers)
        self.job_Table.setSelectionMode(
            QtWidgets.QAbstractItemView.MultiSelection)
        self.job_Table.setSizeAdjustPolicy(
            QtWidgets.QAbstractScrollArea.AdjustToContents)
        self.fin_index = 0

        self.mwfg = self.frameGeometry()  ##Center window
        self.cp = QtWidgets.QDesktopWidget().availableGeometry().center(
        )  ##Center window
        self.total_chrom_count = 0
        self.perc_increase = 0
        self.progress = 0

        #toolbar button actions
        self.visit_repo.triggered.connect(self.visit_repo_func)
        self.go_ncbi.triggered.connect(self.open_ncbi_web_page)

        self.comboBoxEndo.currentIndexChanged.connect(self.changeEndos)

        #ncbi tool
        self.NCBI_File_Search.clicked.connect(self.open_ncbi_tool)

        self.seed_length.setEnabled(False)
        self.five_length.setEnabled(False)
        self.three_length.setEnabled(False)
        self.repeats_box.setEnabled(False)

        #user prompt class
        self.goToPrompt = goToPrompt()
        self.goToPrompt.goToMain.clicked.connect(self.continue_to_main)
        self.goToPrompt.goToMT.clicked.connect(self.continue_to_MT)
        self.goToPrompt.goToPop.clicked.connect(self.continue_to_pop)
示例#15
0
class genLibrary(QtWidgets.QDialog):
    def __init__(self):
        # qt stuff
        super(genLibrary, self).__init__()
        uic.loadUi('library_prompt.ui', self)
        self.setWindowTitle('Generate Library')
        self.setWindowIcon(Qt.QIcon('cas9image.png'))

        # button connections
        self.cancel_button.clicked.connect(self.cancel_function)
        self.BrowseButton.clicked.connect(self.browse_function)
        self.submit_button.clicked.connect(self.submit_data)
        self.progressBar.setValue(0)

        # variables
        self.anno_data = dict()
        self.cspr_file = ''
        self.parser = CSPRparser('')
        self.kegg_nonKegg = ''
        self.gen_lib_dict = dict()
        self.S = SeqTranslate()
        self.cspr_data = dict()
        self.Output = dict()
        self.off_tol = .05
        self.off_max_misMatch = 4
        self.off_target_running = False

        # set the numbers for the num genes combo box item
        for i in range(10):
            self.numGenescomboBox.addItem(str(i + 1))

        # set the numbers for the minOn combo box
        for i in range(19, 70):
            self.minON_comboBox.addItem(str(i + 1))

    # this function launches the window
    # Parameters:
    #       annotation_data: a dictionary that has the data for the annotations searched for
    #           currently MainWindow's searches dict is passed into this
    #       org_file: the cspr_file that pertains to the organism that user is using at the time
    #       anno_type: whether the user is using KEGG or another type of annotation file
    def launch(self, annotation_data, org_file, anno_type):

        self.cspr_file = org_file
        self.anno_data = annotation_data
        self.kegg_nonKegg = anno_type
        self.parser.fileName = self.cspr_file
        self.process = QtCore.QProcess()

        # setting the path and file name fields
        index1 = self.cspr_file.find('.')
        index2 = self.cspr_file.rfind('/')
        self.filename_input.setText(self.cspr_file[index2 + 1:index1] +
                                    '_lib.txt')
        self.output_path.setText(GlobalSettings.CSPR_DB + "/")

        # testing:
        #for data in self.anno_data:
        #   print(data)
        #  for item in self.anno_data[data]:
        #     print('\t', item)
        #    for piece in self.anno_data[data][item]:
        #       print('\t\t', piece)
        # print(self.kegg_nonKegg)

        # depending on the type of file, build the dictionary accordingly
        if self.kegg_nonKegg == 'kegg':
            self.build_dict_kegg_version()
        else:
            self.build_dict_non_kegg()

        # get the data from the cspr file
        self.cspr_data = self.parser.gen_lib_parser(
            self.gen_lib_dict,
            GlobalSettings.mainWindow.endoChoice.currentText())
        #self.generate(5, 200000000000, 15, "mybsulibrary2.txt")

        #for i in range(len(self.cspr_data)):
        #   for j in range(len(self.cspr_data[i])):
        #      print(self.cspr_data[i][j])
        # print('\n\n')

        self.show()

    # this is here in case the user clicks 'x' instead of cancel. Just calls the cancel function
    def closeEvent(self, event):
        closeWindow = self.cancel_function()

        # if the user is doing OT and does not decide to cancel it ignore the event
        if closeWindow == -2:
            event.ignore()
        else:
            event.accept()

    # this function takes all of the cspr data and compresses it again for off-target usage
    def compress_file_off(self):
        f = open(GlobalSettings.CSPR_DB + "/off_compressed.txt", 'w')

        for gene in self.cspr_data:
            for j in range(len(self.cspr_data[gene])):
                loc = self.S.compress(self.cspr_data[gene][j][0], 64)
                seq = self.S.compress(self.cspr_data[gene][j][1], 64)
                pam = self.S.compress(self.cspr_data[gene][j][2], 64)
                score = self.S.compress(self.cspr_data[gene][j][3], 64)
                strand = self.cspr_data[gene][j][4]

                output = str(loc) + ',' + str(seq) + str(strand) + str(
                    pam) + ',' + score
                f.write(output + '\n')
        f.close()

    # this function parses the temp_off file, which holds the off-target analysis results
    # it also updates each target in the cspr_data dictionary to replace the endo with the target's results in off-target
    def parse_off_file(self):
        f = open(GlobalSettings.CSPR_DB + '/temp_off.txt')
        file_data = f.read().split('\n')
        f.close()
        scoreDict = dict()

        # get the data from the file
        for i in range(len(file_data)):
            if file_data[i] == 'AVG OUTPUT':
                continue
            elif file_data[i] != '':
                buffer = file_data[i].split(':')
                scoreDict[buffer[0]] = buffer[1]

        # update cspr_Data
        for gene in self.cspr_data:
            for i in range(len(self.cspr_data[gene])):
                tempTuple = (self.cspr_data[gene][i][0],
                             self.cspr_data[gene][i][1],
                             self.cspr_data[gene][i][2],
                             self.cspr_data[gene][i][3],
                             self.cspr_data[gene][i][4],
                             scoreDict[self.cspr_data[gene][i][1]])
                self.cspr_data[gene][i] = tempTuple

    # this function runs the off_target command
    # NOTE: some changes may be needed to get it to work with other OS besides windows
    def get_offTarget_data(self, num_targets, minScore, spaceValue,
                           output_file, fiveseq):
        self.perc = False
        self.bool_temp = False
        self.running = False

        # when finished, parse the off file, and then generate the lib
        def finished():
            if self.off_target_running:
                self.progressBar.setValue(100)
                self.parse_off_file()
                did_work = self.generate(num_targets, minScore, spaceValue,
                                         output_file, fiveseq)
                self.off_target_running = False
                #self.process.kill()
                if did_work != -1:
                    self.cancel_function()
                    os.remove(GlobalSettings.CSPR_DB + '/off_compressed.txt')
                    os.remove(GlobalSettings.CSPR_DB + '/temp_off.txt')

        # as off-targeting outputs things, update the off-target progress bar
        def progUpdate(p):
            line = str(p.readAllStandardOutput())
            line = line[2:]
            line = line[:len(line) - 1]
            for lines in filter(None, line.split(r'\r\n')):
                if (lines.find("Running Off Target Algorithm for") != -1
                        and self.perc == False):
                    self.perc = True
                if (self.perc == True and self.bool_temp == False and
                        lines.find("Running Off Target Algorithm for") == -1):
                    lines = lines[32:]
                    lines = lines.replace("%", "")
                    if (float(lines) <= 99.5):
                        num = float(lines)
                        self.progressBar.setValue(num)
                    else:
                        self.bool_temp = True

        app_path = GlobalSettings.appdir
        exe_path = app_path + '\OffTargetFolder\OT'
        exe_path = '"' + exe_path + '" '
        data_path = '"' + GlobalSettings.CSPR_DB.replace(
            '/', '\\') + "\\off_compressed.txt" + '" '
        compressed = r' True '  ##
        cspr_path = '"' + self.cspr_file.replace('/', '\\') + '" '
        output_path = '"' + GlobalSettings.CSPR_DB.replace(
            '/', '\\') + '\\temp_off.txt" '
        filename = output_path
        filename = filename[:len(filename) - 1]
        filename = filename[1:]
        filename = filename.replace('"', '')
        CASPER_info_path = r' "' + app_path + '\\CASPERinfo' + '" '
        num_of_mismathes = self.off_max_misMatch
        tolerance = self.off_tol  # create command string

        detailed_output = " False "
        avg_output = "True"
        # set the off_target_running to true, to keep the user from closing the window while it is running
        self.off_target_running = True
        cmd = exe_path + data_path + compressed + cspr_path + output_path + CASPER_info_path + str(
            num_of_mismathes) + ' ' + str(
                tolerance) + detailed_output + avg_output

        #print(cmd)
        self.process.readyReadStandardOutput.connect(
            partial(progUpdate, self.process))
        self.progressBar.setValue(0)
        QtCore.QTimer.singleShot(100, partial(self.process.start, cmd))
        self.process.finished.connect(finished)

    # submit function
    # this function takes all of the input from the window, and calls the generate function
    # Still need to add the checks for 5' seq, and the percentage thing
    def submit_data(self):
        if self.off_target_running:
            return
        output_file = self.output_path.text() + self.filename_input.text()
        minScore = int(self.minON_comboBox.currentText())
        num_targets = int(self.numGenescomboBox.currentText())
        fiveseq = ''

        # error check for csv or txt files
        if not output_file.endswith(
                '.txt') and not self.to_csv_checkbox.isChecked():
            if output_file.endswith('.csv'):
                output_file = output_file.replace('.csv', '.txt')
            else:
                output_file = output_file + '.txt'
        elif self.to_csv_checkbox.isChecked():
            if output_file.endswith('.txt'):
                output_file = output_file.replace('.txt', '.csv')
            elif not output_file.endswith('.txt') and not output_file.endswith(
                    '.csv'):
                output_file = output_file + '.csv'

        # error checking for the space value
        # if they enter nothing, default to 15 and also make sure it's actually a digit
        if self.space_line_edit.text() == '':
            spaceValue = 15
        elif self.space_line_edit.text().isdigit():
            spaceValue = int(self.space_line_edit.text())
        elif not self.space_line_edit.text().isdigit():
            QtWidgets.QMessageBox.question(
                self, "Error",
                "Please enter integers only for space between guides.",
                QtWidgets.QMessageBox.Ok)
            return
        # if space value is more than 200, default to 200
        if spaceValue > 200:
            spaceValue = 200
        elif spaceValue < 0:
            QtWidgets.QMessageBox.question(
                self, "Error",
                "Please enter a space-value that is 0 or greater.",
                QtWidgets.QMessageBox.Ok)
            return

        if self.find_off_Checkbox.isChecked():
            self.compress_file_off()

        # get the fiveprimseq data and error check it
        if self.fiveprimeseq.text() != '' and self.fiveprimeseq.text().isalpha(
        ):
            fiveseq = self.fiveprimeseq.text()
        elif self.fiveprimeseq.text() != '' and not self.fiveprimeseq.text(
        ).isalpha():
            QtWidgets.QMessageBox.question(
                self, "Error",
                "Please make sure only the letters A, T, G, or C are added into 5' End specificity box.",
                QtWidgets.QMessageBox.Ok)
            return

        # get the targeting range data, and error check it here
        if not self.start_target_range.text().isdigit(
        ) or not self.end_target_range.text().isdigit():
            QtWidgets.QMessageBox.question(
                self, "Error",
                "Error: Please make sure that the start and end target ranges are numbers only."
                " Please make sure that start is 0 or greater, and end is 100 or less. ",
                QtWidgets.QMessageBox.Ok)
            return
        elif int(self.start_target_range.text()) >= int(
                self.end_target_range.text()):
            QtWidgets.QMessageBox.question(
                self, "Error",
                "Please make sure that the start number is always less than the end number",
                QtWidgets.QMessageBox.Ok)
            return

        # if they check Off-Targeting
        if self.find_off_Checkbox.isChecked():
            # make sure its a digit
            if self.maxOFF_comboBox.text(
            ) == '' or not self.maxOFF_comboBox.text().isdigit(
            ) and '.' not in self.maxOFF_comboBox.text():
                QtWidgets.QMessageBox.question(
                    self, "Error",
                    "Please enter only numbers for Maximum Off-Target Score. It cannot be left blank",
                    QtWidgets.QMessageBox.Ok)
                return
            else:
                # make sure it between 0 and .5
                if not 0.0 < float(self.maxOFF_comboBox.text()) < .5:
                    QtWidgets.QMessageBox.question(
                        self, "Error",
                        "Please enter a max off target score between 0 and .5!",
                        QtWidgets.QMessageBox.Ok)
                    return
                # compress the data, and then run off-targeting
                self.compress_file_off()
                self.get_offTarget_data(num_targets, minScore, spaceValue,
                                        output_file, fiveseq)
        else:
            # actually call the generaete function
            did_work = self.generate(num_targets, minScore, spaceValue,
                                     output_file, fiveseq)

            if did_work != -1:
                self.cancel_function()

    # cancel function
    # clears everything and hides the window
    def cancel_function(self):
        if self.off_target_running:
            error = QtWidgets.QMessageBox.question(
                self, "Off-Targeting is running",
                "Off-Targetting is running. Closing this window will cancel that process, and return to the main window. .\n\n"
                "Do you wish to continue?",
                QtWidgets.QMessageBox.Yes | QtWidgets.QMessageBox.No,
                QtWidgets.QMessageBox.No)
            if (error == QtWidgets.QMessageBox.No):
                return -2
            else:
                self.off_target_running = False
                self.process.kill()

        self.cspr_file = ''
        self.anno_data = dict()
        self.kegg_nonKegg = ''

        self.filename_input.setText('')
        self.output_path.setText('')

        self.gen_lib_dict.clear()
        self.cspr_data.clear()
        self.Output.clear()

        self.start_target_range.setText('0')
        self.end_target_range.setText('100')
        self.space_line_edit.setText('15')
        self.to_csv_checkbox.setChecked(False)
        self.find_off_Checkbox.setChecked(False)
        self.modifyParamscheckBox.setChecked(False)
        self.maxOFF_comboBox.setText('')
        self.fiveprimeseq.setText('')
        self.off_target_running = False
        self.progressBar.setValue(0)
        self.output_all_checkbox.setChecked(False)

        self.hide()

    # browse function
    # allows the user to browse for a folder
    # stores their selection in the output_path line edit
    def browse_function(self):
        if self.off_target_running:
            return
        # get the folder
        filed = QtWidgets.QFileDialog()
        mydir = QtWidgets.QFileDialog.getExistingDirectory(
            filed, "Open a Folder", GlobalSettings.CSPR_DB,
            QtWidgets.QFileDialog.ShowDirsOnly)
        if (os.path.isdir(mydir) == False):
            return

        # make sure to append the '/' to the folder path
        self.output_path.setText(mydir + "/")

    # this function builds the dictionary that is used in the generate function
    # this is the version that builds it from the KEGG data
    # builds it exactly as Brian built it in the files given
    def build_dict_kegg_version(self):
        for search in self.anno_data:
            for gene in self.anno_data[search]:
                for i in range(len(self.anno_data[search][gene])):
                    self.gen_lib_dict[gene] = [
                        self.anno_data[search][gene][i][0],
                        self.anno_data[search][gene][i][2],
                        self.anno_data[search][gene][i][3],
                        self.anno_data[search][gene][i][1]
                    ]

    # this function builds the dictionary that is used in the generate function
    # this is the version that builds it from data from feature_table, gbff, or gff
    # builds it exactly as Brian built it in the files given
    def build_dict_non_kegg(self):
        for search in self.anno_data:
            for gene in self.anno_data[search]:
                descript = gene.split(';')
                temp_descript = descript[0]
                if temp_descript == 'hypothetical protein':
                    temp_descript = temp_descript + " " + str(
                        self.anno_data[search][gene][0][3])

                temp_descript = temp_descript + '||' + descript[len(descript) -
                                                                1]

                self.gen_lib_dict[temp_descript] = [
                    self.anno_data[search][gene][0][1],
                    self.anno_data[search][gene][0][3],
                    self.anno_data[search][gene][0][4],
                    self.anno_data[search][gene][0][5]
                ]

    # generate function taken from Brian's code
    def generate(self, num_targets_per_gene, score_limit, space, output_file,
                 fiveseq):
        deletedDict = dict()

        # check and see if we need to search based on target_range
        startNum = float(self.start_target_range.text())
        endNum = float(self.end_target_range.text())
        checkStartandEndBool = False
        if startNum != 0.0 or endNum != 100.0:
            startNum = startNum / 100
            endNum = endNum / 100
            checkStartandEndBool = True

        for gene in self.gen_lib_dict:
            #print(self.gen_lib_dict[gene])
            target_list = self.cspr_data[
                gene]  # Gets the chromosome the gene is on

            #target_list = chrom_list[k:l+1]
            # Reverse the target list if the gene is on negative strand:
            if self.gen_lib_dict[gene][3] == "-":
                target_list.reverse()

            # Filter out the guides with low scores and long strings of T's
            # also store the ones deleted if the user selects 'modify search parameters'
            if self.modifyParamscheckBox.isChecked():
                deletedDict[gene] = list()
            for i in range(len(target_list) - 1, -1, -1):
                # check the target_range here
                if target_list[i][3] < score_limit:
                    if self.modifyParamscheckBox.isChecked():
                        deletedDict[gene].append(target_list[i])
                    target_list.pop(i)
                # check for T's here
                # what is this??? and shouldn't it be pulled out into its own loop?
                elif re.search("T{5,10}", target_list[i][1]) is not None:
                    if self.modifyParamscheckBox.isChecked():
                        deletedDict[gene].append(target_list[i])
                    target_list.pop(i)

            # check for the fiveseq
            if fiveseq != '':
                for i in range(len(target_list) - 1, -1, -1):
                    if not target_list[i][1].startswith(fiveseq.upper()):
                        if self.modifyParamscheckBox.isChecked():
                            deletedDict[gene].append(target_list[i])
                        target_list.pop(i)
            # check the target range here
            if checkStartandEndBool:
                for i in range(len(target_list) - 1, -1, -1):
                    totalDistance = self.gen_lib_dict[gene][
                        2] - self.gen_lib_dict[gene][1]
                    target_loc = target_list[i][0] - self.gen_lib_dict[gene][1]

                    myRatio = target_loc / totalDistance

                    if not (startNum <= myRatio <= endNum):
                        if self.modifyParamscheckBox.isChecked():
                            deletedDict[gene].append(target_list[i])
                        target_list.pop(i)
            # if the user selected off-targetting, check to see that the targets do not exceed the selected max score
            if self.find_off_Checkbox.isChecked():
                maxScore = float(self.maxOFF_comboBox.text())
                for i in range(len(target_list) - 1, -1, -1):
                    if maxScore < float(target_list[i][5]):
                        if self.modifyParamscheckBox.isChecked():
                            deletedDict[gene].append(target_list[i])
                        target_list.pop(i)
            # Now generating the targets
            self.Output[gene] = list()
            i = 0
            vec_index = 0
            prev_target = (0, "xyz", 'abc', 1, "-")
            while i < num_targets_per_gene:
                # select the first five targets with the score and space filter that is set in the beginning
                if len(target_list) == 0 or vec_index >= len(target_list):
                    break
                while abs(target_list[vec_index][0] - prev_target[0]) < space:
                    if target_list[vec_index][3] > prev_target[
                            3] and prev_target != (0, "xyz", "abc", 1, "-"):
                        self.Output[gene].remove(prev_target)
                        self.Output[gene].append(target_list[vec_index])
                        prev_target = target_list[vec_index]
                    vec_index += 1
                    # check and see if there will be a indexing error
                    if vec_index >= len(target_list) - 1:
                        vec_index = vec_index - 1
                        break
                # Add the new target to the output and add another to i
                self.Output[gene].append(target_list[vec_index])
                prev_target = target_list[vec_index]
                i += 1
                vec_index += 1

        # if the user selects modify search parameters, go through and check to see if each one has the number of targets that the user wanted
        # if not, append from the deletedDict until they do
        if self.modifyParamscheckBox.isChecked():
            for gene in self.Output:
                if len(self.Output[gene]) < num_targets_per_gene:
                    for i in range(len(deletedDict[gene])):
                        if len(self.Output[gene]) == num_targets_per_gene:
                            break
                        else:
                            loc = deletedDict[gene][i][0]
                            seq = deletedDict[gene][i][1]
                            pam = deletedDict[gene][i][2]
                            score = deletedDict[gene][i][3]
                            strand = deletedDict[gene][i][4] + '*'
                            endo = deletedDict[gene][i][5]
                            self.Output[gene].append(
                                (loc, seq, pam, score, strand, endo))
        """
        for essential in self.Output:
            print(essential)
            for i in range(len(self.Output[essential])):
                print('\t', self.Output[essential][i])
        print('***********************')
        """

        # Now output to the file
        try:
            f = open(output_file, 'w')

            # if both OT and output all are checked
            if self.find_off_Checkbox.isChecked(
            ) and self.output_all_checkbox.isChecked():
                f.write(
                    'Gene Name,Sequence,On-Target Score,Off-Target Score,Location,PAM,Strand\n'
                )
            # if only output all is checked
            elif not self.find_off_Checkbox.isChecked(
            ) and self.output_all_checkbox.isChecked():
                f.write(
                    'Gene Name,Sequence,On-Target Score,Location,PAM,Strand\n')
            # if only OT is checked
            elif self.find_off_Checkbox.isChecked(
            ) and not self.output_all_checkbox.isChecked():
                f.write('Gene Name,Sequence,Off-Target Score\n')
            # if neither is checked
            elif not self.find_off_Checkbox.isChecked(
            ) and not self.output_all_checkbox.isChecked():
                f.write('Gene Name,Sequence\n')

            for essential in self.Output:
                i = 0
                for target in self.Output[essential]:
                    # check to see if the target did not match the user's parameters and they selected 'modify'
                    # if the target has an error, put 2 asterisks in front of the target sequence
                    if '*' in target[4]:
                        tag_id = "**" + essential + "-" + str(i + 1)
                    else:
                        tag_id = essential + "-" + str(i + 1)
                    i += 1

                    if self.to_csv_checkbox.isChecked():
                        tag_id = tag_id.replace(',', '')

                    # if both OT and output all are checked
                    if self.find_off_Checkbox.isChecked(
                    ) and self.output_all_checkbox.isChecked():
                        f.write(tag_id + ',' + target[1] + ',' +
                                str(target[3]) + ',' + str(target[5]) + ',' +
                                str(target[0]) + ',' + target[2] + ',' +
                                target[4][0] + '\n')
                    # if only output all is checked
                    elif not self.find_off_Checkbox.isChecked(
                    ) and self.output_all_checkbox.isChecked():
                        f.write(tag_id + ',' + target[1] + ',' +
                                str(target[3]) + ',' + str(target[0]) + ',' +
                                target[2] + ',' + target[4][0] + '\n')
                    # if only OT is checked
                    elif self.find_off_Checkbox.isChecked(
                    ) and not self.output_all_checkbox.isChecked():
                        f.write(tag_id + ',' + target[1] + ',' + target[5] +
                                '\n')
                    # if neither is checked
                    elif not self.find_off_Checkbox.isChecked(
                    ) and not self.output_all_checkbox.isChecked():
                        f.write(tag_id + "," + target[1] + "\n")
            f.close()
        except PermissionError:
            QtWidgets.QMessageBox.question(
                self, "File Cannot Open",
                "This file cannot be opened. Please make sure that the file is not opened elsewhere and try again.",
                QtWidgets.QMessageBox.Ok)
            return -1
        except Exception as e:
            print(e)
            return
示例#16
0
class Compare_Orgs:

    def __init__(self, output_path, base_org_path, base_org, endo, other_genomes, csize):
        # initialize SeqTranslate object
        self.ST = SeqTranslate()
        self.output_path = output_path
        # my_orgs contains just the
        self.organisms = other_genomes
        self.organisms.append(base_org)
        self.organisms = sorted(self.organisms)
        self.db_path = base_org_path

        # This sets the size of the subsets. NOTE: DO NOT SET THIS TO A LARGE NUMBER IF THERE ARE A LOT OF ORGANISMS
        self.combo_size = csize

        # Dictionary of dictionaries. Key1: generic total sequence Key2: org Value: position
        self.searchableseqs = {}

        # Container that stores all the sequences seen the combination of organisms defined by the key
        # An example key would be (sce, yli) for the shared sequences between S.cerevisiae and Y.lipolytica
        self.buckets = {}

        # Intitialize the self.buckets container to contain the tuple of every organism subset
        for i in range(2, csize+1):
            for subset in itertools.combinations(self.organisms, i):
                self.buckets[subset] = []
                print(subset)
        self.endo = endo

        # The object that is iterated over to decompress the output into readable form
        self.compressed_output = {}

        # Generates the sequence lists
        for org in self.organisms:
            print(org)
            self.make_lists(org)

        # Runs the comparison
        self.create_comparison()
        self.write_to_file()

    # Takes an organism and parses the target data into positions and repeated sequences containers
    def make_lists(self, org):
        name1 = self.db_path + org + "_" + self.endo + ".cspr"
        f = open(name1, 'r')
        curchrom = 0
        genomeID = f.readline()
        while True:
            position = f.readline()
            if position.startswith(">"):
                curchrom += 1
                print(curchrom)
            else:
                if position[0:-1] == "REPEATS":
                    break
                # adds to the positions container the unique position with organism, and chromosome as keys
                line = position[:-1].split(",")
                # change line into generic (no "+" or "-" change to generic .)
                totseq = self.ST.to_generic_compressed(line[1])
                self.add_to_sequence_matrix(totseq, org, curchrom, line[0])

        while True:
            seedseq = f.readline()[:-1]
            if seedseq.find("END_OF_FIL") != -1:
                break
            taillocs = f.readline().split('\t')[:-1]
            for item in taillocs:
                loctup = item.split(',')
                totseq = self.ST.to_generic_compressed([seedseq,loctup[2][1:]])
                self.add_to_sequence_matrix(totseq, org, loctup[0], loctup[1])
        f.close()

    # Takes in the variables of a sequence including what organism it is found on and adds it to the dict of dicts
    # named:self.searchableseqs
    def add_to_sequence_matrix(self, totseq, org, chrom, location):
        if totseq in self.searchableseqs.keys():
            # already seen this organism and sequence
            if org in self.searchableseqs[totseq].keys():
                self.searchableseqs[totseq][org].append((chrom, location))
            # already seen this sequence but not this sequence in the organism
            else:
                self.searchableseqs[totseq][org] = []
                self.searchableseqs[totseq][org].append((chrom, location))
        # new organism and new sequence
        else:
            self.searchableseqs[totseq] = {}
            self.searchableseqs[totseq][org] = []
            self.searchableseqs[totseq][org].append((chrom, location))

    def int_to_char(self, i):
        switcher = {
            0: 'A',
            1: 'T',
            2: 'C',
            3: 'G'
        }
        return switcher[i]

    def revcom(self, sequence):
        revseq = ""
        change = {'A':'T',
                  'T':'A',
                  'G':'C',
                  'C':'G',
                  'N':'N'}
        for nt in sequence:
            if nt in change:
                rnt = change[nt]
            else:
                rnt = nt
            revseq = rnt + revseq
        return revseq

    def create_comparison(self):
        # Put every sequence in the appropriate bucket
        tempdict = dict()
        for sequence in self.searchableseqs:
            # Look for the set of organisms containing this sequence
            if len(self.searchableseqs[sequence].keys()) > 1:
                # Make sure the tuple is in the right order
                orgs = self.searchableseqs[sequence].keys()
                orgs = tuple(sorted(orgs))
                # iterate through all the sequences contained in each organism
                for org in self.searchableseqs[sequence].keys():
                    tempdict[org] = []
                    for location in self.searchableseqs[sequence][org]:
                        tempdict[org].append(location)
                insert_tup = (sequence, tempdict)
                tempdict = {}
                # contains a list of tuples with the sequence then short dictionary of organisms containing sequence
                if orgs in self.buckets:
                    self.buckets[orgs].append(insert_tup)

    def write_to_file(self):
        filename = self.output_path + "compare_"
        for org in self.organisms:
            filename += org + "_"
        filename += self.endo + ".txt"
        f = open(filename, 'w')
        for key in self.buckets:
            f.write(str(key) + " " + str(len(self.buckets[key])) + "\n")
            for seq in self.buckets[key]:
                #f.write(self.ST.decompress64(seq[0], True) + "\n")
                for suborg in seq[1]:
                    #f.write(str(suborg) + ":")
                    for locs in seq[1][suborg]:
                        poo = 1
                        #f.write(str(locs[0]) + "," + str(self.ST.decompress64(locs[1])) + "\t")
                        #f.write("\n")
            f.write("\n")
        f.close()
示例#17
0
class CSPRparser:
    #default ctor: currently just sets the file name and initializes all of the variables I will be using
    def __init__(self, inputFileName):

        # variables used in this class
        self.multiSum = 0  #multitargetting sum taken from the previous version of make_graphs
        self.multiCount = 0  #multitargetting count taken from the previous version of make_graphs
        self.seqTrans = SeqTranslate(
        )  #SeqTranslate variable. for decrompressing the data
        self.chromesomeList = list(
        )  # list of a list for the chromesomes. As it currently stands, this variable is used in both read_chromesomes and in read_targets
        self.karystatsList = list(
        )  # list of (ints) of the karyStats (whatever those are) to be used for the get_chrom_length function
        self.genome = ""  # genome name
        self.misc = ""  # anything from the misc line
        self.repeats = {
        }  #dictionary of the number of repeats. See the read_repeats function for more info
        self.seeds = {
        }  #dictionary of which chromesomes are repeats. See the read_repeats function for more info
        self.dec_tup_data = {}
        self.chromesomesSelectedList = list()
        # data for population analysis
        # dict:
        # key = the seed
        #       value = tuple (org name, chom #, location, sequence, pam, score, strand, endo)
        self.popData = {}

        #file path variable
        self.fileName = inputFileName

    # this is the parser that is used for the gen_lib window
    # it returns a list of lists, essentially all of the chromosomes in the file, and their data
    # to make it faster, this now uses read_targets
    def gen_lib_parser(self, genDict, endo):
        retDict = dict()

        #for item in genDict:
        #   retList.append((list()))

        for gene in genDict:
            retDict[gene] = list()
            retDict[gene] = self.read_targets(
                '', (genDict[gene][0], genDict[gene][1], genDict[gene][2]),
                endo)
        return retDict

    #this function reads the first 3 lines of the file: also stores the karyStats in a list of ints
    def read_first_lines(self):
        fileStream = open(self.fileName, 'r')

        #read and parse the genome line
        self.genome = fileStream.readline()
        colonIndex = self.genome.find(':') + 2
        buffer1 = self.genome[colonIndex:]
        self.genome = buffer1

        #read and store the karystats line on its own, it is parsed down below
        buffer = fileStream.readline()

        #read and parse the misc line
        self.misc = fileStream.readline()
        colonIndex = self.misc.find(':') + 2
        buffer1 = self.misc[colonIndex:]
        self.misc = buffer1

        #now parse the karystats line
        #ignore the first bit of the string. only care about what's after the colon
        colonIndex = buffer.find(':') + 2

        #parse the line, store the numbers in the list
        for i in range(colonIndex, len(buffer)):
            bufferString1 = ""
            if buffer[i] == ',':
                bufferString1 = buffer[colonIndex:i]
                #print(bufferString1)
                colonIndex = i + 1
                self.karystatsList.append(int(bufferString1))

        fileStream.close()
        #print(self.karystatsList)

    # this function gets the chromesome names out of the CSPR file provided
    # returns the gene line, and the misc line as well
    # also stores the Karystats
    def get_chromesome_names(self):
        self.read_first_lines()
        self.chromesomesSelectedList.clear()

        fileStream = open(self.fileName, 'r')

        retGen = fileStream.readline()
        junk = fileStream.readline()
        retMisc = fileStream.readline()

        buffer = fileStream.readline()

        while True:  # breaks out when the buffer line = REPEATS
            if buffer == 'REPEATS\n':
                break
            elif '>' in buffer:
                self.chromesomesSelectedList.append(buffer)
            buffer = fileStream.readline()

        return retGen, retMisc

#this function reads all of the chromosomes in the file
#stores the data into a list of lists. So the line starting with '>' is the first index of each sub list

    def read_chromesome(self, endo):
        self.chromesomeList.clear()
        tempList = list()
        fileStream = open(self.fileName, 'r')

        #ignore the first 3 lines
        fileStream.readline()
        fileStream.readline()
        fileStream.readline()

        bufferString = fileStream.readline()
        while (True):  #this loop breaks out when bufferString is REPEATS
            tempList.append(bufferString)

            if (bufferString == "REPEATS\n"):
                break
            bufferString = fileStream.readline()
            while (True):  #this loop breaks out when bufferString[0] is >
                if (bufferString == "REPEATS\n"):
                    self.chromesomeList.append(tempList)
                    tempList = []
                    break

                elif (
                        bufferString[0] == '>'
                ):  #if we get to the next chromesome, append the tempList, clear it, and break
                    self.chromesomeList.append(tempList)
                    tempList = []
                    break
                else:  #else decompress the data, and append it to the list
                    bufferString = self.seqTrans.decompress_csf_tuple(
                        bufferString, endo=endo)
                    tempList.append(bufferString)
                    #print(bufferString)
                    bufferString = fileStream.readline()
        fileStream.close()

########################################################################################################
#    this function reads just the repeats
#    it stores this data in 2 dictionaries:
#        repeats dictionary is the number of dictionaries
#               key = the seed, and the value is the number of repeats
#        seeds dictionary is each seed that is repeated
#           key =  the seeds, and the value is the actual chromesome that is repeated
#    this function also stores the sum and count in the class itself as well
#    this function is very similar to what make_graphs in Multitargeting.py was doing before
########################################################################################################

    def read_repeats(self, endoChoice):
        index = 0

        seedLength = int(self.seqTrans.endo_info[endoChoice][1])

        #clear what is already in there
        self.repeats.clear()
        self.seeds.clear()

        # only read the repeats section of the file
        fileStream = open(self.fileName, 'r')
        buf = fileStream.readline()
        while buf != "REPEATS\n":
            buf = fileStream.readline()
        split_info = fileStream.read().split('\n')
        fileStream.close()

        #parse the info now and store it in the correct dictionaries
        while (index + 1 < len(split_info)):
            seed = self.seqTrans.decompress64(split_info[index],
                                              slength=seedLength)
            repeat = split_info[index + 1].split("\t")

            self.repeats[seed] = 0
            self.seeds[seed] = []
            self.dec_tup_data[seed] = []
            for item in repeat:
                #print(self.seqTrans.decompress_csf_tuple(item, endo=endoChoice, bool=True))
                if item != "":
                    self.repeats[seed] += 1
                    sequence = item.split(',')
                    self.seeds[seed].append(sequence)
                    temp = sequence[1:4]

                    #print(seed)
                    #print(str(self.seqTrans.compress(seed,64)))
                    #print(temp[1])

                    #temp[1] = str(self.seqTrans.compress(seed,64)) + str(temp[1])
                    #print(temp)

                    temp.append(
                        str(
                            self.seqTrans.decompress64(
                                seed, toseq=True, slength=int(seedLength))))
                    #print(temp)
                    string = ",".join(temp)
                    #print(string)
                    #print('\t', self.seqTrans.decompress_csf_tuple(string, bool=True, endo=endoChoice))
                    self.dec_tup_data[seed].append(
                        self.seqTrans.decompress_csf_tuple(string,
                                                           bool=True,
                                                           endo=endoChoice))
                    self.multiSum += self.seqTrans.decompress64(
                        sequence[3], slength=seedLength)
                    self.multiCount += 1

            index = index + 2

    # this function takes a list of all the file names
    # it finds the repeats for each file, and also checks to see if those repeats are in each file, not just the first
    # stores the data in a class object
    def popParser(self, cspr_file, endoChoice):
        self.popData.clear()
        seedLength = self.seqTrans.endo_info[endoChoice][1]

        referenceList = list()

        # skip the junk
        file_stream = open(cspr_file, 'r')
        genomeLine = file_stream.readline()
        file_stream.readline()

        # parse the genome line
        genomeLine = genomeLine.split(',')
        retNumber = int(genomeLine[len(genomeLine) - 1])

        # parse the miscalleneous line and get the data we want out of it
        misc_line = file_stream.readline()
        colonIndex = misc_line.find(':') + 2
        usefulData = misc_line[colonIndex:]

        usefulData = usefulData.split('|')
        usefulData.pop()

        i = 0
        while i < len(usefulData):
            temp = usefulData[i].split(',')
            referenceList.append((temp[0], temp[1]))
            i += 1

        buf = file_stream.readline()
        while buf != 'REPEATS\n':
            buf = file_stream.readline()

        split_info = file_stream.read().split('\n')
        file_stream.close()

        index = 0
        while (index + 1 < len(split_info)):
            # get the seed and repeat line
            seed_d = self.seqTrans.decompress64(split_info[index],
                                                slength=int(seedLength),
                                                toseq=True)
            repeat = split_info[index + 1].split('\t')

            # if the seed is not in the dict, put it in there
            if seed_d not in self.popData:
                self.popData[seed_d] = list()

            for item in repeat:
                if item != '':
                    commaIndex = item.find(',')
                    chrom = item[:commaIndex]
                    sequence = item.split(',')
                    temp = sequence[1:4]
                    temp.append(str(seed_d))
                    string = ",".join(temp)
                    tempTuple = self.seqTrans.decompress_csf_tuple(
                        string, bool=True, endo=endoChoice)
                    orgName = referenceList[int(chrom) - 1][0]

                    storeTuple = (
                        orgName,
                        chrom,
                        tempTuple[0],
                        tempTuple[1],
                        tempTuple[2],
                        tempTuple[3],
                        tempTuple[4],
                        tempTuple[5],
                    )

                    self.popData[seed_d].append(storeTuple)

            index += 2

        return retNumber, referenceList
        """
        # for each file given
        for count in range(len(file_list)):

            # open the file and get the orgName
            fileStream = open(file_list[count], 'r')
            buf = fileStream.readline()
            colonIndex = buf.find(':')
            orgName = buf[colonIndex + 2:]
            orgName = orgName.replace('\n', '')
            print(orgName)

            # now skip until the repeats section
            while buf != 'REPEATS\n':
                buf = fileStream.readline()

            # read the whole repeats section
            split_info = fileStream.read().split('\n')
            fileStream.close()

            index = 0
            seedLength = self.seqTrans.endo_info[endoChoice][1]
            while (index + 1 < len(split_info)):
                # get the seed and repeat line
                seed_d = self.seqTrans.decompress64(split_info[index], slength=int(seedLength), toseq=True)
                repeat = split_info[index + 1].split("\t")

                # if the seed is not in the dict, put it in there
                if seed_d not in self.popData:
                    self.popData[seed_d] = list()


                # go through and append each line
                for item in repeat:
                    if item != "":
                        # get the chromosome number
                        commaIndex = item.find(',')
                        chrom = item[:commaIndex]
                        # from read_repeats
                        sequence = item.split(',')
                        temp = sequence[1:4]
                        temp.append(str(seed_d))
                        string = ",".join(temp)
                        tempTuple = self.seqTrans.decompress_csf_tuple(string, bool=True, endo=endoChoice)

                        # store what we need
                        storeTuple = (orgName, chrom,  tempTuple[0], tempTuple[1], tempTuple[2], tempTuple[3], tempTuple[4], tempTuple[5],)
                        #storeTuple = (orgName, chrom, temp)

                        # append it
                        self.popData[seed_d].append(storeTuple)
                index += 2
            split_info.clear()
        """

    #this function just reads the whole file
    def read_all(self):
        print("Reading First Lines.")
        self.read_first_lines()
        print("Reading Chromesomes.")
        self.read_chromesome()
        print("Reading Repeats.")
        self.read_repeats()

    #this functions reads the entirety of the file into one string
    def get_whole_file(self):
        fileStream = open(self.fileName)
        fileData = fileStream.read()
        fileStream.close()
        return (fileData)

    #this function reads all of the targets in the file. It is essentially a copy of get_targets from the results.py file, written by Brian Mendoza
    def read_targets(self, genename, pos_tuple, endo):
        #open the file, and store the genome and the misc tags.
        #Note: The KARYSTATS is not stored at all. This should not be hard to implement if it is needed
        fileStream = open(self.fileName)
        self.genome = fileStream.readline()
        fileStream.readline()
        retList = list()
        self.misc = fileStream.readline()

        header = fileStream.readline()

        # get the sequence length for the decompressor
        seqLength = self.seqTrans.endo_info[endo][2]
        # Find the right chromosome:
        while True:
            # quick error check so the loop eventually breaks out if nothing is found
            if header == "":
                print("Error: the target could not be found in this file!")
                break
            # in the right chromosome/scaffold?
            if header.find("(" + str(pos_tuple[0]) + ")") != -1:
                while True:
                    # Find the appropriate location by quickly decompressing the location at the front of the line
                    myline = fileStream.readline()
                    if self.seqTrans.decompress64(
                            myline.split(",")[0],
                            slength=seqLength) >= pos_tuple[1]:
                        while self.seqTrans.decompress64(
                                myline.split(",")[0],
                                slength=seqLength) < pos_tuple[2]:
                            retList.append(
                                self.seqTrans.decompress_csf_tuple(myline,
                                                                   endo=endo))
                            myline = fileStream.readline()
                    else:
                        continue
                    break
                break
            else:
                header = fileStream.readline()
        fileStream.close()

        return retList

    def uniq_seq_count(self):
        self.unique_targets = 0
        for chromo in self.chromesomeList:
            for data in chromo:
                if len(data) == 6:
                    self.unique_targets += 1
        return self.unique_targets