def greedy_alg(self):
        end = False
        oracle_calls = 0

        # take an arbitrary element out of F
        random.shuffle(self.F)
        # label vector of the elements (binary classification {-1, 1}
        labels = -1 * np.ones(shape=(self.size_E, 1))

        # E labels of initial labelled data
        for i in self.C_A:
            labels[i] = 1
        for i in self.C_B:
            labels[i] = 0

        if not intersect(self.C_A, self.C_B):
            while len(self.F) > 0 and end == False:
                # print(len(self.F))
                next_point = self.F.pop()
                new_hull_C_A = ConvexHull(self.E[self.C_A], 1)
                new_hull_C_A.add_points([self.get_point(next_point)], 1)
                new_C_A, added = get_points_inside_convex_hull(self.E, new_hull_C_A, self.C_A, self.F + self.C_B,
                                                               next_point)
                oracle_calls += 1

                if not intersect(new_C_A, self.C_B):
                    self.hull_C_A = new_hull_C_A
                    self.C_A = new_C_A
                    self.F = list(set(self.F) - set(added))

                    for x in added:
                        labels[x] = 1
                        self.colors_E[x] = "orange"

                else:
                    new_hull_C_B = ConvexHull(self.E[self.C_B], 1)
                    new_hull_C_B.add_points([self.get_point(next_point)], 1)
                    new_C_B, added = get_points_inside_convex_hull(self.E, new_hull_C_B, self.C_B, self.F + self.C_A,
                                                                   next_point)
                    oracle_calls += 1

                    if not intersect(self.C_A, new_C_B):
                        self.hull_C_B = new_hull_C_B
                        self.C_B = new_C_B
                        self.F = list(set(self.F) - set(added))
                        for x in added:
                            labels[x] = 0
                            self.colors_E[x] = "violet"
        else:
            return [], [], False

        return oracle_calls, labels, True
示例#2
0
def training_sets_disjoint(openmlData, mcs):
    for pair in itertools.combinations(range(openmlData.class_number), r=2):
        if intersect(mcs.S[pair[0]], mcs.S[pair[1]]):
            return False
    return True
示例#3
0
    def generalized_algorithm(self):
        #Check if initial sets are disjoint
        if set.intersection(*[set(x) for x in self.S]):
            prediction = np.empty((self.size_E, ), dtype=np.int)
            prediction.fill(-1)
            for i, class_data in enumerate(self.training_sets):
                for elem in class_data:
                    prediction[elem] = i
            return 0, prediction, False
        #If sets are disjoint continue
        oracle_calls = 0
        if not self.is_greedy:
            F = np.asarray([x for x, _ in self.pre_sorting.items()
                            ]).astype(dtype=np.int)
        else:
            F = [x for x in self.F]
            random.shuffle(F)
            F = np.asarray(F).astype(dtype=np.int)

        arange_indices = np.arange(0, len(F))
        F_indices = np.empty((self.size_E, ), dtype=np.int)
        F_indices[F] = arange_indices
        elements_remaining = len(F)
        prediction = np.empty((self.size_E, ), dtype=np.int)
        prediction.fill(-1)
        for i, class_data in enumerate(self.S):
            for elem in class_data:
                prediction[elem] = i

        while elements_remaining > 0:
            element_start = time.time()
            print(elements_remaining)
            next_point = F[np.max(np.where(F != -1)[0])]
            F[F_indices[next_point]] = -1
            elements_remaining -= 1
            for i in range(self.class_number):
                if not self.is_greedy:
                    current_class = self.pre_sorting[next_point][1][i]
                else:
                    current_class = i
                current_class_elements = np.where(
                    prediction == current_class)[0]
                current_class_outside = np.where(
                    prediction != current_class)[0]
                start = time.time()
                if self.linprog_calc is None:
                    hull = copy.copy(self.current_hulls[current_class])
                    hull.add_points([self.E[next_point]], 1)
                    if self.print_runtimes:
                        print("Hull add point", time.time() - start)
                    start = time.time()
                    new_closed, added = get_points_inside_convex_hull(
                        self.E, hull, current_class_elements,
                        current_class_outside)
                    if self.print_runtimes:
                        print("Get Inside points", time.time() - start)
                else:
                    new_closed, added = get_points_inside_convex_hull_linprog(
                        self.E, np.append(current_class_elements, next_point),
                        current_class_outside, next_point)
                    if self.print_runtimes:
                        print("Linprog", time.time() - start)
                oracle_calls += 1
                start = time.time()
                if not intersect(
                        new_closed,
                        np.setdiff1d(
                            np.where((prediction >= 0))[0],
                            current_class_elements)):
                    F[F_indices[added]] = -1
                    elements_remaining = len(np.where(F != -1)[0])
                    prediction[added] = current_class
                    if not self.linprog_calc:
                        self.current_hulls[current_class] = hull
                    if self.print_runtimes:
                        print("Intersection", time.time() - start)

                    break
                if self.print_runtimes:
                    print("No Intersection", time.time() - start)
            if self.print_runtimes:
                print("Element Added Total Time", time.time() - element_start)
        return oracle_calls, prediction, True
    def optimal_runtime_alg(self):
        oracle_calls = 0
        end = False
        counter = 0
        while len(self.F) > 0 and end == False:
            # print(len(self.F))
            if not self.decide_farthest():
                items = list(self.convex_A_distances.items())
                if len(items) > 0:
                    next_point = items[len(items) - 1][0]

                    Hull1 = self.C_A
                    Hull1.add_points([self.get_point(next_point)], 1)
                    inside1 = get_points_inside_convex_hull(self.E, Hull1)
                    oracle_calls += 1
                    if not intersect(inside1, self.C_B):
                        self.C_A.add_points([self.get_point(next_point)], 1)
                        for x in inside1:
                            if x not in self.C_A:
                                self.colors_E[x] = "orange"
                                self.F.remove(x)
                                del self.convex_A_distances[x]
                                del self.convex_B_distances[x]
                        self.C_A = inside1

                    else:
                        # Renew first half space
                        PointsH_1 = np.ndarray(shape=(len(self.C_A), 2))
                        counter = 0
                        for i in self.C_A:
                            PointsH_1[counter] = self.get_point(i)
                            counter += 1
                        self.C_A = ConvexHull(PointsH_1, 1)

                        # Test second half space
                        Hull2 = self.C_B
                        Hull2.add_points([self.get_point(next_point)], 1)
                        inside2 = get_points_inside_convex_hull(self.E, Hull2)
                        oracle_calls += 1

                        if not intersect(self.C_A, inside2):
                            self.C_B.add_points([self.get_point(next_point)], 1)
                            for x in inside2:
                                if x not in self.C_B:
                                    self.colors_E[x] = "violet"
                                    self.F.remove(x)
                                    del self.convex_A_distances[x]
                                    del self.convex_B_distances[x]
                            self.C_B = inside2
                        else:
                            # Renew second half space
                            PointsH_2 = np.ndarray(shape=(len(self.C_B), 2))
                            counter = 0
                            for i in self.C_B:
                                PointsH_2[counter] = self.get_point(i)
                                counter += 1
                            self.C_B = ConvexHull(PointsH_2, 1)
                            self.F.remove(next_point)
                            del self.convex_A_distances[next_point]
                            del self.convex_B_distances[next_point]

            else:
                items = list(self.convex_B_distances.items())
                if len(items) > 0:
                    next_point = items[len(items) - 1][0]
                    Hull2 = self.C_B
                    Hull2.add_points([self.get_point(next_point)], 1)
                    inside2 = get_points_inside_convex_hull(self.E, Hull2, self.C_B)
                    oracle_calls += 1

                    if not intersect(inside2, self.C_A):
                        self.C_B.add_points([self.get_point(next_point)], 1)
                        for x in inside2:
                            if x not in self.C_B:
                                self.colors_E[x] = "violet"
                                self.F.remove(x)
                                del self.convex_A_distances[x]
                                del self.convex_B_distances[x]
                        self.C_B = inside2

                    else:
                        # Renew second half space
                        PointsH_2 = np.ndarray(shape=(len(self.C_B), 2))
                        counter = 0
                        for i in self.C_B:
                            PointsH_2[counter] = self.get_point(i)
                            counter += 1
                        self.C_B = ConvexHull(PointsH_2, 1)

                        # Test first half space
                        Hull1 = self.C_A
                        Hull1.add_points([self.get_point(next_point)], 1)
                        inside1 = get_points_inside_convex_hull(self.E, Hull1)
                        oracle_calls += 1

                        if not intersect(self.C_B, inside1):
                            self.C_A.add_points([self.get_point(next_point)], 1)
                            for x in inside1:
                                if x not in self.C_A:
                                    self.colors_E[x] = "orange"
                                    self.F.remove(x)
                                    del self.convex_A_distances[x]
                                    del self.convex_B_distances[x]
                            self.C_A = inside1
                        else:
                            # Renew first half space
                            PointsH_1 = np.ndarray(shape=(len(self.C_A), 2))
                            counter = 0
                            for i in self.C_A:
                                PointsH_1[counter] = self.get_point(i)
                                counter += 1
                            self.C_A = ConvexHull(PointsH_1, 1)
                            self.F.remove(next_point)
                            del self.convex_A_distances[next_point]
                            del self.convex_B_distances[next_point]

        return oracle_calls
    def optimal_hull_alg(self):
        time_point = time.time()
        oracle_calls = 0
        counter = 0
        labels = -1 * np.ones(shape=(self.size_E, 1))
        outside_points_1 = [x for x in self.convex_A_hull_distances.keys()] + self.C_B
        outside_points_2 = [x for x in self.convex_B_hull_distances.keys()] + self.C_A

        # add labels
        for i in self.C_A:
            labels[i] = 1
        for i in self.C_B:
            labels[i] = 0

        # check if initial_hulls are intersecting
        Hull1 = self.C_A
        inside1, added = get_points_inside_convex_hull(self.E, Hull1, self.C_A, outside_points_1)
        self.C_A = inside1
        Hull2 = self.C_B
        inside2, added = get_points_inside_convex_hull(self.E, Hull2, self.C_B, outside_points_2)
        self.C_B = inside2

        if not intersect(inside1, inside2):
            while (len(self.convex_A_hull_distances) > 0 or len(self.convex_B_hull_distances) > 0):
                # print(len(self.Set1HullDistances), len(self.Set2HullDistances))
                added = []

                # First set is nearer to nearest not classified point
                if self.decide_nearest_hull():

                    time_point = time_step("Find Neighbour:", time_point)

                    if len(self.convex_A_hull_distances) > 0:
                        next_point = self.convex_A_hull_distances.popitem()[0]

                        Hull1 = self.C_A
                        Hull1.add_points([self.get_point(next_point)], 1)
                        time_point = time_step("Adding Convex Hull E 1:", time_point)

                        inside1, added = get_points_inside_convex_hull(self.E, Hull1, self.C_A,
                                                                       outside_points_1)
                        oracle_calls += 1
                        time_point = time_step("Getting inside E:", time_point)

                        # if there is no intersection the point can be added to the first convex set
                        if not intersect(inside1, self.C_B):
                            time_point = time_step("Intersection Test:", time_point)
                            self.C_A = Hull1
                            time_point = time_step("Adding Convex Hull E:", time_point)

                            for x in added:
                                # add to labels
                                labels[x] = 1
                                self.colors_E[x] = "orange"
                                if x in self.convex_A_hull_distances.keys():
                                    del self.convex_A_hull_distances[x]
                                if x in self.convex_B_hull_distances.keys():
                                    del self.convex_B_hull_distances[x]

                                outside_points_1.remove(x)
                            self.C_A = inside1

                            time_point = time_step("Update arrays:", time_point)


                        # if there is an intersection we have to check if it can be added to the second set
                        else:
                            time_point = time_step("Intersection Test:", time_point)
                            # Renew first half space
                            PointsH_1 = np.ndarray(shape=(len(self.C_A), self.dimension_E))
                            counter = 0
                            for i in self.C_A:
                                PointsH_1[counter] = self.get_point(i)
                                counter += 1
                            self.C_A = ConvexHull(PointsH_1, 1)

                            # Test second half space
                            Hull2 = self.C_B
                            Hull2.add_points([self.get_point(next_point)], 1)
                            inside2, added = get_points_inside_convex_hull(self.E, Hull2, self.C_B,
                                                                           outside_points_2)
                            oracle_calls += 1

                            # the point can be added to the second set,
                            # if we reach this point the first time all the other E which are classified did not change the optimal margin
                            if not intersect(self.C_A, inside2):
                                self.C_B = Hull2
                                for x in added:
                                    # add to labels
                                    labels[x] = 0
                                    self.colors_E[x] = "violet"
                                    if x in self.convex_A_hull_distances.keys():
                                        del self.convex_A_hull_distances[x]
                                    if x in self.convex_B_hull_distances.keys():
                                        del self.convex_B_hull_distances[x]
                                    outside_points_2.remove(x)
                                self.C_B = inside2


                            # the point cannot be added to any set
                            else:
                                # Renew second half space
                                PointsH_2 = np.ndarray(shape=(len(self.C_B), self.dimension_E))
                                counter = 0
                                for i in self.C_B:
                                    PointsH_2[counter] = self.get_point(i)
                                    counter += 1
                                self.C_B = ConvexHull(PointsH_2, 1)
                                if next_point in outside_points_1:
                                    outside_points_1.remove(next_point)
                                if next_point in outside_points_2:
                                    outside_points_2.remove(next_point)

                    time_point = time_step("Point add Hull:", time_point)


                # Second set is nearer to nearest not classified point
                else:

                    time_point = time_step("Find Neighbour:", time_point)

                    if len(self.convex_B_hull_distances) > 0:
                        next_point = self.convex_B_hull_distances.popitem()[0]
                        Hull2 = self.C_B
                        Hull2.add_points([self.get_point(next_point)], 1)
                        inside2, added = get_points_inside_convex_hull(self.E, Hull2, self.C_B,
                                                                       outside_points_2)
                        oracle_calls += 1

                        # we can add the new point to the second, the nearer set
                        if not intersect(inside2, self.C_A):
                            self.C_B = Hull2
                            for x in added:
                                # add to labels
                                labels[x] = 0
                                self.colors_E[x] = "violet"
                                if x in self.convex_A_hull_distances.keys():
                                    del self.convex_A_hull_distances[x]
                                if x in self.convex_B_hull_distances.keys():
                                    del self.convex_B_hull_distances[x]
                                outside_points_2.remove(x)
                            self.C_B = inside2



                        # we check if we can add the point to the first set
                        # if we reach this point the first time all the other E which are classified did not change the optimal margin
                        else:
                            # Renew second half space
                            PointsH_2 = np.ndarray(shape=(len(self.C_B), self.dimension_E))
                            counter = 0
                            for i in self.C_B:
                                PointsH_2[counter] = self.get_point(i)
                                counter += 1
                            self.C_B = ConvexHull(PointsH_2, 1)

                            # Test first half space
                            Hull1 = self.C_A
                            Hull1.add_points([self.get_point(next_point)], 1)
                            inside1, added = get_points_inside_convex_hull(self.E, Hull1, self.C_A,
                                                                           outside_points_1)
                            oracle_calls += 1

                            # the point can be classified to the second set
                            if not intersect(self.C_B, inside1):
                                self.C_A = Hull1
                                for x in added:
                                    # add to labels
                                    labels[x] = 1
                                    self.colors_E[x] = "orange"
                                    if x in self.convex_A_hull_distances.keys():
                                        del self.convex_A_hull_distances[x]
                                    if x in self.convex_B_hull_distances.keys():
                                        del self.convex_B_hull_distances[x]
                                    outside_points_1.remove(x)
                                self.C_A = inside1




                            # we cannot classify the point
                            else:
                                # Renew first half space
                                PointsH_1 = np.ndarray(shape=(len(self.C_A), self.dimension_E))
                                counter = 0
                                for i in self.C_A:
                                    PointsH_1[counter] = self.get_point(i)
                                    counter += 1
                                self.C_A = ConvexHull(PointsH_1, 1)
                                if next_point in outside_points_1:
                                    outside_points_1.remove(next_point)
                                if next_point in outside_points_2:
                                    outside_points_2.remove(next_point)

                time_point = time_step("Point add Hull:", time_point)
        else:
            return ([], [], False)

        return (oracle_calls, labels, True)
    def optimal_alg(self):
        time_point = time.time()
        oracle_calls = 0
        counter = 0
        labels = -1 * np.ones(shape=(self.size_E, 1))
        outside_points_1 = [x for x in self.convex_A_distances.keys()] + self.C_B
        outside_points_2 = [x for x in self.convex_B_distances.keys()] + self.C_A

        # add labels
        for i in self.C_A:
            labels[i] = 1
        for i in self.C_B:
            labels[i] = 0

        if not intersect(self.C_A, self.C_B):
            while (len(self.convex_A_distances) > 0 or len(self.convex_B_distances) > 0):
                # print(len(self.Set1Distances), len(self.Set2Distances))
                added = []

                # First set is nearer to nearest not classified point
                if self.decide_nearest():
                    time_point = time_step("Find Neighbour:", time_point)
                    if len(self.convex_A_distances) > 0:
                        next_point = self.convex_A_distances.popitem()[0]
                        new_hull_C_A = ConvexHull(self.E[self.C_A], 1)
                        new_hull_C_A.add_points([self.get_point(next_point)], 1)
                        time_point = time_step("Adding Convex Hull E 1:", time_point)
                        new_C_A, added = get_points_inside_convex_hull(self.E, new_hull_C_A, self.C_A,
                                                                       outside_points_1)
                        oracle_calls += 1
                        time_point = time_step("Getting inside E:", time_point)

                        # if there is no intersection the point can be added to the first convex set
                        if not intersect(new_C_A, self.C_B):
                            time_point = time_step("Intersection Test:", time_point)
                            self.C_A = new_C_A
                            self.hull_C_A = new_hull_C_A
                            for x in added:
                                # add to labels
                                labels[x] = 1
                                self.colors_E[x] = "orange"
                                if x in self.convex_A_distances.keys():
                                    del self.convex_A_distances[x]
                                if x in self.convex_B_distances.keys():
                                    del self.convex_B_distances[x]
                            outside_points_1 = list(set(outside_points_1) - set(added))
                            time_point = time_step("Update arrays:", time_point)


                        # if there is an intersection we have to check if it can be added to the second set
                        else:
                            # Test second half space
                            new_hull_C_B = ConvexHull(self.E[self.C_B], 1)
                            new_hull_C_B.add_points([self.get_point(next_point)], 1)
                            new_C_B, added = get_points_inside_convex_hull(self.E, new_hull_C_B, self.C_B,
                                                                           outside_points_2)
                            oracle_calls += 1

                            # the point can be added to the second set,
                            # if we reach this point the first time all the other E which are classified did not change the optimal margin
                            if not intersect(self.C_A, new_C_B):
                                self.C_B = new_C_B
                                self.hull_C_B = new_hull_C_B
                                for x in added:
                                    # add to labels
                                    labels[x] = 0
                                    self.colors_E[x] = "violet"
                                    if x in self.convex_A_distances.keys():
                                        del self.convex_A_distances[x]
                                    if x in self.convex_B_distances.keys():
                                        del self.convex_B_distances[x]
                                outside_points_2 = list(set(outside_points_2) - set(added))
                            # the point cannot be added to any set
                            else:
                                if next_point in outside_points_1:
                                    outside_points_1.remove(next_point)
                                if next_point in outside_points_2:
                                    outside_points_2.remove(next_point)

                    time_point = time_step("Point add Hull:", time_point)

                # Second set is nearer to nearest not classified point
                else:
                    time_point = time_step("Find Neighbour:", time_point)
                    if len(self.convex_B_distances) > 0:
                        next_point = self.convex_B_distances.popitem()[0]
                        new_hull_C_B = ConvexHull(self.E[self.C_B], 1)
                        new_hull_C_B.add_points([self.get_point(next_point)], 1)
                        new_C_B, added = get_points_inside_convex_hull(self.E, new_hull_C_B, self.C_B,
                                                                       outside_points_2)
                        oracle_calls += 1

                        # we can add the new point to the second, the nearer set
                        if not intersect(new_C_B, self.C_A):
                            self.C_B = new_C_B
                            self.hull_C_B = new_hull_C_B
                            for x in added:
                                # add to labels
                                labels[x] = 0
                                self.colors_E[x] = "violet"
                                if x in self.convex_A_distances.keys():
                                    del self.convex_A_distances[x]
                                if x in self.convex_B_distances.keys():
                                    del self.convex_B_distances[x]
                            outside_points_2 = list(set(outside_points_2) - set(added))

                        # we check if we can add the point to the first set
                        # if we reach this point the first time all the other E which are classified did not change the optimal margin
                        else:
                            # Test first half space
                            new_hull_C_A = ConvexHull(self.E[self.C_A], 1)
                            new_hull_C_A.add_points([self.get_point(next_point)], 1)
                            new_C_A, added = get_points_inside_convex_hull(self.E, new_hull_C_A, self.C_A,
                                                                           outside_points_1)
                            oracle_calls += 1

                            # the point can be classified to the second set
                            if not intersect(self.C_B, new_C_A):
                                self.hull_C_A = new_hull_C_A
                                self.C_A = new_C_A
                                for x in added:
                                    # add to labels
                                    labels[x] = 1
                                    self.colors_E[x] = "orange"
                                    if x in self.convex_A_distances.keys():
                                        del self.convex_A_distances[x]
                                    if x in self.convex_B_distances.keys():
                                        del self.convex_B_distances[x]
                                outside_points_1 = list(set(outside_points_1) - set(added))

                            # we cannot classify the point
                            else:
                                if next_point in outside_points_1:
                                    outside_points_1.remove(next_point)
                                if next_point in outside_points_2:
                                    outside_points_2.remove(next_point)

                time_point = time_step("Point add Hull:", time_point)
        else:
            return [], [], False

        return oracle_calls, labels, True
    def greedy_alg2(self):
        end = False
        oracle_calls = 0
        random.shuffle(self.F)

        # label vector of the elements (binary classification {-1, 1}
        labels = -1 * np.ones(shape=(self.size_E, 1))
        outside_1 = self.F + self.C_B
        outside_2 = self.F + self.C_A

        # E labels of initial labelled data
        for i in self.C_A:
            labels[i] = 1
        for i in self.C_B:
            labels[i] = 0

        # E initial initial_hulls
        Hull1 = self.C_A
        inside1, added = get_points_inside_convex_hull(self.E, Hull1, self.C_A, self.F + self.C_B)
        oracle_calls += 1

        if not intersect(inside1, self.C_B):
            for x in added:
                labels[x] = 1
                self.colors_E[x] = "orange"
            self.C_A = inside1

        # E initial initial_hulls
        Hull2 = self.C_B
        inside2, added = get_points_inside_convex_hull(self.E, Hull2, self.C_B, self.F + self.C_A)
        oracle_calls += 1

        if not intersect(inside2, self.C_A):
            for x in added:
                labels[x] = 0
                self.colors_E[x] = "violet"
            self.C_B = inside2

        if not intersect(inside1, inside2):
            for x in self.C_A:
                if x in self.F:
                    self.F.remove(x)
            for x in self.C_B:
                if x in self.F:
                    self.F.remove(x)

            while len(self.F) > 0 and end == False:
                # print(len(self.F))
                next_point = self.F.pop()

                if (random.randint(0, 1)):
                    Hull1 = self.C_A
                    Hull1.add_points([self.get_point(next_point)], 1)
                    inside1, added = get_points_inside_convex_hull(self.E, Hull1, self.C_A, self.F + self.C_B,
                                                                   next_point)
                    oracle_calls += 1

                    if not intersect(inside1, self.C_B):
                        self.C_A.add_points([self.get_point(next_point)], 1)
                        for x in added:
                            labels[x] = 1
                            self.colors_E[x] = "orange"
                            if x in self.F:
                                self.F.remove(x)
                        self.C_A = inside1

                    else:
                        # initialize first half space
                        PointsH_1 = np.ndarray(shape=(len(self.C_A), self.dimension_E))
                        counter = 0
                        for i in self.C_A:
                            PointsH_1[counter] = self.get_point(i)
                            counter += 1

                        self.C_A = ConvexHull(PointsH_1, 1)

                        Hull2 = self.C_B
                        Hull2.add_points([self.get_point(next_point)], 1)
                        inside2, added = get_points_inside_convex_hull(self.E, Hull2, self.C_B,
                                                                       self.F + self.C_A, next_point)
                        oracle_calls += 1

                        if not intersect(self.C_A, inside2):
                            self.C_B.add_points([self.get_point(next_point)], 1)
                            for x in added:
                                labels[x] = 0
                                self.colors_E[x] = "violet"
                                if x in self.F:
                                    self.F.remove(x)
                            self.C_B = inside2
                        else:
                            # initialize second half space
                            PointsH_2 = np.ndarray(shape=(len(self.C_B), self.dimension_E))
                            counter = 0
                            for i in self.C_B:
                                PointsH_2[counter] = self.get_point(i)
                                counter += 1

                            self.C_B = ConvexHull(PointsH_2, 1)

                else:
                    Hull2 = self.C_B
                    Hull2.add_points([self.get_point(next_point)], 1)
                    inside2, added = get_points_inside_convex_hull(self.E, Hull2, self.C_B, self.F + self.C_A,
                                                                   next_point)
                    oracle_calls += 1

                    if not intersect(inside2, self.C_A):
                        self.C_B.add_points([self.get_point(next_point)], 1)
                        for x in added:
                            labels[x] = 0
                            self.colors_E[x] = "violet"
                            if x in self.F:
                                self.F.remove(x)
                        self.C_B = inside2

                    else:
                        # initialize first half space
                        PointsH_2 = np.ndarray(shape=(len(self.C_B), self.dimension_E))
                        counter = 0
                        for i in self.C_B:
                            PointsH_2[counter] = self.get_point(i)
                            counter += 1

                        self.C_B = ConvexHull(PointsH_2, 1)

                        Hull1 = self.C_A
                        Hull1.add_points([self.get_point(next_point)], 1)
                        inside1, added = get_points_inside_convex_hull(self.E, Hull1, self.C_A,
                                                                       self.F + self.C_B, next_point)
                        oracle_calls += 1

                        if not intersect(self.C_B, inside1):
                            self.C_A.add_points([self.get_point(next_point)], 1)
                            for x in added:
                                labels[x] = 1
                                self.colors_E[x] = "orange"
                                if x in self.F:
                                    self.F.remove(x)
                            self.C_A = inside1
                        else:
                            # initialize second half space
                            PointsH_1 = np.ndarray(shape=(len(self.C_A), self.dimension_E))
                            counter = 0
                            for i in self.C_A:
                                PointsH_1[counter] = self.get_point(i)
                                counter += 1

                            self.C_A = ConvexHull(PointsH_1, 1)
        else:
            return ([], [], False)

        return (oracle_calls, labels, True)
    def greedy_fast_alg(self):
        end = False
        oracle_calls = 0
        random.shuffle(self.F)

        # label vector of the elements (binary classification {1, 0} -1 are unclassified
        labels = -1 * np.ones(shape=(self.size_E, 1))
        outside_1 = self.F + self.C_B
        outside_2 = self.F + self.C_A

        # E labels of initial labelled data
        for i in self.C_A:
            labels[i] = 1
        for i in self.C_B:
            labels[i] = 0

        # E initial initial_hulls
        inside1, added, intersection = get_inside_points(self.E, self.C_A, self.F, CheckSet=self.C_B)
        oracle_calls += 1

        if not intersection:
            for x in added:
                labels[x] = 1
                self.colors_E[x] = "orange"
            self.C_A = inside1

        # E initial initial_hulls
        inside2, added, intersection = get_inside_points(self.E, self.C_B, self.F, CheckSet=self.C_A)
        oracle_calls += 1

        if not intersection:
            for x in added:
                labels[x] = 0
                self.colors_E[x] = "violet"
            self.C_B = inside2

        if not intersect(inside1, inside2):
            for x in self.C_A:
                if x in self.F:
                    self.F.remove(x)
            for x in self.C_B:
                if x in self.F:
                    self.F.remove(x)

            while len(self.F) > 0 and end == False:
                # print(len(self.F))
                next_point = self.F.pop()
                inside1, added, intersection = get_inside_points(self.E, self.C_A, self.F, next_point,
                                                                 self.C_B)
                oracle_calls += 1

                if not intersection:
                    for x in added:
                        labels[x] = 1
                        self.colors_E[x] = "orange"
                        if x in self.F:
                            self.F.remove(x)
                    self.C_A = inside1

                else:
                    inside2, added, intersection = get_inside_points(self.E, self.C_B, self.F, next_point,
                                                                     self.C_A)
                    oracle_calls += 1

                    if not intersection:
                        for x in added:
                            labels[x] = 0
                            self.colors_E[x] = "violet"
                            if x in self.F:
                                self.F.remove(x)
                        self.C_B = inside2
        else:
            return ([], [], False)

        return (oracle_calls, labels, True)